
sales@pythian.com www.pythian.com

This article is the second
of a series by Pythian
experts that will regularly
be published as the
“Performance Corner”
column in the NoCOUG
Journal.

The main software components of Oracle Big
Data Appliance are Cloudera Hadoop and Oracle
NoSQL. Both are non-relational databases
that were designed for high scalability. But as
we’ll soon see, they are very different in their
architecture, design goals, and use cases. The
most striking thing about Cloudera Hadoop and
Oracle NoSQL is that they are open source and
available for download from Cloudera and Oracle
websites. You can experiment with the software,
develop prototypes, and explore possible
architectures before you commit to purchase a
new device. Of course, you can also deploy the
software on your own hardware without ever
purchasing a device from Oracle.

Oracle NoSQL
NoSQL is a recent development in the data storage
architecture landscape. Popular websites such as Amazon,
Google, and Facebook encountered a growing need to
scale their databases across large clusters and between
multiple data centers while keeping latency to only few
milliseconds for 99% of the transactions. Existing database
solutions proved either too unreliable, had too high latency,
were not scalable enough, or were too expensive. These
organizations realized that different data sets impose
different requirements, and a user’s shopping history does
not have the same consistency, durability, and isolation
requirements that the transaction history of a bank account
will require. They are willing to relax consistency in return

for increased scalability, large-scale distribution, high
availability, and low latency. In addition to not being fully
ACID, NoSQL stores do not implement the relational model.
They typically support a simpler data model such as
key-value pairs, supporting data retrieval by the key but
with limited support for join operations or secondary
indexes.

Oracle NoSQL is a key-value store, based on Berkeley DB
Java Edition. It is distributed and designed for low latency,
high volume, and high availability. As a distributed data
store, Oracle NoSQL is installed on multiple servers. Those
servers, typically physical devices, are referred to as
“storage nodes.” Each one of the storage nodes contains
one or more “replication nodes,” which are grouped into
“replication groups.” The replication groups are the way
Oracle NoSQL minimizes the possibility of data being lost
or unavailable as the result of a server crash. Oracle
recommends that each storage node will contain only one
replication node.

Each replication node in a replication group contains
identical data and is placed on a separate storage node,
perhaps in different data centers. In the event of a server
crash, only one partition will be lost, and the data will still
be accessible on other storage nodes. In each replication
group, one of the replication nodes is designated the
“master node,” and this is the only node that can service data
modification. The other nodes in the group are read-only
but can become the master node if the master node fails.
The number of nodes in a replication group determines
how many servers can fail while the system is still available.

“A user’s shopping history does not have the same ACID requirements
that the transaction history of a bank account will require.”

sales@pythian.com www.pythian.com

The data model of Oracle NoSQL is a variation of a key-value
map. The key is a string, and it has “major key path” and
“minor key path” components. The value can be of any data
type. Records are allocated to specific data partitions
according to their keys and are stored in the replication
group assigned to the partition. Records with the same
major key are assigned to the same partition and are
therefore stored on the same physical devices. This means
that all records with the same major key can be updated
in a single transaction, and it also means that if there are
only a small number of major keys, the load on the physical
servers will not be balanced.

Oracle NoSQL allows the application developers to choose
the desired level of consistency and durability for each
record and each operation. This choice has a significant
impact on the performance of the system and its reliability.
Most NoSQL databases offer this level of flexibility, and
benchmarks of those databases often show amazing
performance simply because the developers reduced
consistency and durability to levels that may not be
acceptable in practical applications. It is always recommended
to read the small print when encountering impressive
benchmark results.

With Oracle NoSQL, developers control the durability of
an operation with two decisions: how many nodes must
acknowledge a write operation before it is considered
successful and whether the new data is actually written to
disk before the node acknowledges the operation.

Write operations can be acknowledged by all replication
nodes in the group, a majority of the replication nodes,
or none of the replication nodes. Requiring all nodes to
acknowledge each write operation means that all nodes
will return the same consistent information on subsequent
reads, but it also means that write operations will take
longer, and if a single node crashes, all write operations
to the group will fail.

In the other extreme, if only the master has to acknowledge,
write operations will continue to happen even if only one
node is left in the group. But reads from the slave nodes may
return data that is older than the data in the master node,
because newly written data will not be sent immediately
from the master to the slave nodes.

When a node acknowledges a write operation, it will either
write the data to disk before acknowledging a successful
operation (the way a redo buffer is written immediately on

commit) or it can acknowledge the operation immediately
and write to disk later (the way DBWR writes dirty buffers
to disk)—it can send the write request to the operating
system immediately but not force the OS to write the data
to disk before returning control to the NoSQL process.

The other major choice that Oracle NoSQL leaves to
developers is the consistency level. Developers can decide
for each read operation whether they need the most recent
data written to the system or whether slightly older data
will do. For example, when Facebook displays a list of
notifications sent to a specific user, it is fine if the list of
messages is actually few minutes old and the most recent
messages will show up with a small delay. When you check
out from an online store, you do need the shopping basket
to list your most recent purchases.

Application developers can choose between:

• Absolute consistency, where data is read from the
master and guaranteed to be the most recent.

• No consistency, where data is served from the
leastloaded slave regardless of how new it is.

• Time-based consistency, where the developer specifies
how recent the data should be and the client searches
for a node that will satisfy this condition.

• Version-based consistency, where the developer specifies
a version number and requires the data to be of that
version or newer. This is normally done to maintain
consistency between multiple read-modify-write
operations.

Note that unlike many other NoSQL databases, Oracle
NoSQL does not support eventual consistency, where the
server stores multiple conflicting versions of the data and
returns all versions to the client during read operations, and
the client resolves the conflict and updates the database
with the result.

Cloudera Hadoop
Oracle Big Data Appliance contains Cloudera’s version of
Apache Hadoop. Hadoop is a platform for storing and
processing large amounts of unstructured data—for ex-

“In usual database architectures, data is
brought from the SAN to the processors.

Hadoop brings the processing to the data.”

sales@pythian.com www.pythian.com

ample, logs from web servers of online retailers. These
logs contain valuable data: what each customer looked at,
how long he stayed in the website, what he purchased,
etc. But these logs are just text files; like Oracle’s alert
log, they contain repetitious data, useless messages from
developers, and several different text formats. In addition,
log files have no indexes; if you look for specific piece of
information, you are required to read the whole file. These
attributes mean that unstructured data will typically
require more disk space, disk bandwidth, and processing
resources than equivalent data loaded into a relational
database.

Hadoop is an architecture designed to use inexpensive and
unreliable hardware to build a massively parallel and highly
scalable data-processing cluster. It was designed so that
adding servers will result in a proportional increase in load
capacity and that server failure will result in performance
decline but never in system failure or wrong results.

To support these design goals, the architecture is shared
nothing: Nodes rarely talk to each other, so there is little
overhead involved in synchronizing the processing servers,
and each node uses its own local disks. Data is spread across
the cluster when it is loaded, and computation usually
runs on the server where the data is located. This allows
spreading the load across the cluster without running into
network bottlenecks. In usual database architectures, data
is brought from the SAN to the processors. Hadoop brings
the processing to the data.

Hadoop is made of two components: HDFS, a distributed
and replicated file system, and Map-Reduce, an API that
simplifies distributed data processing.

HDFS provides redundant storage for massive amounts of
data. It is designed for use cases similar to those of an
enterprise data warehouse: Data is loaded once and scanned
completely by each processing job. File sizes are typically
very large, and to reflect that, Hadoop’s default block
size is 64MB (compare with Oracle’s 8KB!). Sustained high
throughput is given priority over low latency, and there is
no random access to files in HDFS. In addition, the files are
read only: They are created; data is loaded into them; and
when loading is finished, the file is closed and no additional
changes can be made to the file.

Similar to Oracle NoSQL, HDFS also improves reliability
by copying each block to at least three different servers
in the cluster. The replication doesn’t just provide failover

in case a node crashes; it also allows multiple jobs to
process the same data in parallel on different servers.
(http://hadoop.apache.org/common/docs/current/hdfs_
design.html)

Map-reduce is a method to distribute processing jobs across
the servers. Jobs are split into small, mostly independent
tasks. Each task is responsible for processing data in one
block, and whenever possible it will run on a server that
stores that block locally.

As the name suggests, map-reduce has two phases: map and
reduce. Map tasks filter and modify the data. This is analogous
to the “where” portion of a query and to non-aggregating
functions applied to the data. The reduce phase applies
the data aggregation: group by and aggregating functions
such as sum and average.

Since map-reduce jobs are limited to filtering and aggregating,
most complex analytical queries do not translate well to
map-reduce and are therefore difficult to implement in
Hadoop.

sales@pythian.com www.pythian.com

Hadoop is a far more basic system than a relational or
even a NoSQL database. It provides services similar to the
operating system while leaving the vast majority of the
work to developers. As with any platform, you will not be
surprised to discover than software was written to run on
top of Hadoop and provide better tools for data loading
and processing.

Notable examples are as follows:

• Pig and Hive: Both are query languages. Instead of
writing map-reduce jobs in Java from scratch, Pig and
Hive are high-level languages that make this querying
far easier and even accessible to non-programmers.
Hive is very similar to SQL and even requires schema
definitions for the data in HDFS files. Pig looks far more
like explain plans, giving developers more control over
the way data is accessed and processed.

• Sqoop: Connects to relational databases such as MySQL
and Oracle and allows transferring data between the
database and Hadoop.

• Flume: Aggregates log files from multiple sources and
loads them into Hadoop.

• Oracle Loader for Hadoop: Allows users to build
map-reduce jobs that load data into Oracle. Essentially
the last step in the reduce process, it generates Oracle
data blocks that are loaded directly into the database.
It is the fastest way to load Hadoop data into Oracle.

There are many more tools designed to make life with
Hadoop easier. Hadoop developers and administrators are
encouraged to search for them, as there is no need to
reinvent the wheel.

Oracle NoSQL—Design Considerations
A mobile application like Draw Something™ is a classic use
case for a NoSQL database. The use case is very simple:
“Two players alternate turns between drawing a pic-
ture for the other to guess. The person drawing chooses
one of three guess words to draw. After the drawer has
finished drawing, the guesser will view an instant replay

of the drawing, minus hesitation and delays. The guesser
is given a number of blank spaces and scrambled letters
to type the guess word.” (http://en.wikipedia.org/wiki/
Draw_something)

This game is easy to model with key-value pairs. (Please
note that I am describing my idea of how I’d implement a
similar application, and all of the numbers are based on
my imagination. They do not represent Draw Something’s
actual data or architecture. It is highly unlikely that Draw
Something actually uses Oracle NoSQL.)

We’ll note that each pair of players is allowed to have
only one drawing between them at any given time: Either
I’m send ing you a drawing or you’re sending me a drawing.
I am not allowed to send you a second drawing while you
are guessing.

Because there is one and only one drawing for each two
players, the key can be the name pairing: name1-name2
for example. We can create name2-name1 as a dummy key
at the same time to avoid duplicates, or we can always sort
the names alphabetically. The value will be the drawing,
which sounds like a small video. We’ll also want to store a
bit that says whose turn is it now.

Lets guess that Draw Something has about 100M users; if each
has 10 friends on average, we are looking at 1 billion keys,
each at a size of 100 bytes. Let’s say each value takes 20KB
and we are looking at 20TB of data. To be safe, we’ll want
each record replicated three times. Why? A replication factor
of 3 is recommended by Oracle (http://docs.oracle.com/
cd/NOSQL/html/AdminGuide/store-config.html#rep-factor)
and typically used by NoSQL stores. If you spread your servers
across multiple data centers, you will want to consider a
larger replication factor to allow local reads from each
data center. With the replication factor, we are looking at
around 60TB of data.

How would we configure our NoSQL database for this data?
Let’s assume each of our servers has 2TB of storage available
for data. We will be looking at 30 nodes to satisfy our storage
requirements.

Now let’s look at the workload. Most of the operations will
be updates—replacing an existing image with a new one;

“The idea is to spread the I/O and
processing load among many cheap

machines instead of investing in a few
expensive servers.”

“The big question is, do we want to buy
Oracle Big Data Appliance, or just run the

software on our own cluster?”

sales@pythian.com www.pythian.com

memory. In addition to the JE cache, Oracle NoSQL also
uses the file system (FS) cache. FS cache can be used
more effectively than JE cache, since records in FS cache
don’t have Java object overhead.

The Oracle NoSQL administration guide gives the following
formula on how to size disk I/O based on the expected cache
hit ratios and required number of transactions per second:
http://docs.oracle.com/cd/NOSQL/html/AdminGuide/
select-cache-strategy.html#cache-size-advice

((read + create + update + delete)ops/sec * (1 - cache hit fraction)) /
Number of replication nodes) = required disk IOPs/sec

In our system, let’s assume 100,000 transactions per sec-
ond and a 50% cache hit ratio:

(100,000*0.5)/30 = 1666.67 IOPs/sec = around 10 disks.

So either 10 disks per server are required or a larger number
of storage nodes and replication groups.

Oracle NoSQL arrives with the DBCacheSize utility, allowing
you to estimate the cache size per storage node, and the
Oracle NoSQL Administrator Guide has a spreadsheet to
help calculate the Java heap size.

To get an idea of the IOPs and latencies that are supported
by Oracle NoSQL, I suggest taking a look at Oracle’s white
paper. (https://blogs.oracle.com/charlesLamb/entry/
oracle_nosql_database_performance_tests)

On a relatively small 12-node cluster, an insert throughput
of 100,000 operations per second was achieved with a 95%
latency of 7ms. This performance is also achievable on
Oracle database, but it will require a very fast, well-tuned
storage system.

Hadoop Design Considerations

The classic use case for Hadoop is processing web server
logs to gain insight about website visitors and customer
activities. Another favorite use case is analyzing other
text files such as blog posts, Twitter streams, and job posts
to gain insights on trendy topics, customer complaints,
and the job market. As an Oracle consultant, I typically
see Hadoop used to run ETL processes: Data is extracted
from the OLTP database, processed, aggregated, and
sometimes mixed with results from the processing of
unstructured data. The results are loaded into the enterprise
data warehouse, typically running on Oracle database, where
the business analysts can use their BI tools to process the
data.

a few create operations from users who have new friends;
and there are almost no deletes. We expect exactly one
read for every write: I draw something and you look at it
and draw back. With this read-write mix, we’ll want more
replication groups, since only one node in the group can
service writes, and a lower replication factor, since we
don’t need many slave nodes to handle a large read load.

With 30 storage nodes, we’ll define 10 replication groups
of three replication nodes each. More replication groups
will allow higher write throughput but will cause the
nodes to become unbalanced. For example, if we went
with 30 replication groups to make sure we have a master
node for each storage node, we will end up with three
replication nodes on each storage node. In the current
version of Oracle NoSQL, there is no way to make sure all
master nodes end up on the separate storage nodes and
prevent a single node from potentially becoming a bottle-
neck. To be on the safe side, we will stay with a balanced
configuration of one replication node per storage node.

Each replication group requires at least one data parti-
tion. However, it is recommended to have many more,
since future versions of Oracle NoSQL will allow adding
replication groups and nodes, and the data will be bal-
anced between the groups by moving partitions between
the nodes. Too few partitions and there will be no room
for growth, or the nodes will become unbalanced. While
there is some overhead involved in a large number of
partitions, we still recommend a very large number of
partitions to avoid the risk of running into this limit: let’s
say, 30,000 partitions for our example.

At this point we have a topology for our Oracle NoSQL
cluster, and we are ready to install. It should go with-
out saying that this configuration should be well tested
before it goes live—especially for an unbalanced load
that can cause a node to become a bottleneck as the
demands from the database increase. At this release of
Oracle NoSQL, once the cluster is defined, nodes cannot
be added, so plan on enough space to allow for a year of
growth.

Once the cluster is installed, we need to define the size of
the memory. The main data structure of Oracle NoSQL is a
b-tree, and the database uses an internal cache called “JE
cache” to store the blocks in this structure. With 1TB of
data per node, there is no way we can fit all our data into
memory, but we can improve performance significantly if
we can fit most of the internal blocks of the b-tree into

sales@pythian.com www.pythian.com

As an example, we’ll take a very simple use case where we
go through website log files and, based on IPs, determine
how many users from each state made a purchase at our
online store.

The map stage is simple: we go through the website logs,
select the log lines that indicate a successful purchase,
match the IP address in the line with a U.S. state, and if
there is a match, write the state to the output file. Each
reduce task will receive a list of occurrences of a specific
state and will only have to count how many times the state
appears in the list.

To maximize performance, we’ll want to make sure there
is sufficient processing and disk bandwidth for the map
and reduce tasks, and enough network bandwidth to send
the data from mappers to reducers and for replication
between nodes.

Hadoop clusters are usually sized by their storage requirements,
which are typically high. Suppose our website generates
100GB of log files per day. With a replication factor of 3,
we have 300GB every day and around 6TB each month.
This means that to satisfy the storage requirements of the
next year, we’ll need around 20 servers with 2TB storage
in each.

The processing servers will require either one 2TB disk or two
1TB disks. In any case, do not use RAID—since Hadoop handles
replication, RAID is neither required nor recommended.
A ratio of 1HD per 2 cores per 6–8GB RAM is considered a
good fit for most Hadoop applications, which tend to be I/O
bounded. If the workload is particularly heavy on processing,
more cores will be required. The idea is to spread the I/O
and processing load among many cheap machines instead
of investing in few expensive servers. We typically assume
that each map or reduce job will require 1.5 cores and 1–2GB
RAM. Like any database server, Hadoop should never swap.

In addition to disk requirements, Hadoop can consume vast
quantities of bandwidth. For each TB loaded into HDFS,
3TB will be sent to different Hadoop nodes for replication.
During processing, the map tasks send the output to the
reducers for processing over the network, if we are processing
1TB data and not filtering, that’s an additional 1TB of data
sent over the network. Of course, the results of the reduce
phase are written to HDFS too and are also replicated three
times over the network. Nodes should be connected at 1Gb/s
at least, and if your reduce jobs generate large amounts
of output, a faster network is recommended.

Each reduce tasks only analyzes a specific portion of the
data. To aggregate IPs by state, 50 reduce jobs are necessary
(one for each state). The data is sorted and partitioned
between the map and reduce job, so each reduce task
can look at its own part of the sorted data. However, it is
very likely that the reduce task for California will need to
process more data than the task for Montana. Data skew
is known to cause difficult-to-solve performance problems
in Oracle Database, and it is still a problem with Hadoop.
Designing jobs to avoid this problem, aggregating by hash
keys whenever possible, is a big part of the job of Hadoop
developers. As administrator of a Hadoop system, the best
you can do is use Hadoop’s fair-share scheduler rather
than the default scheduler. The fair-share scheduler will
make sure that smaller tasks will not have to wait until
the larger tasks finish processing but will get access to
processors.

Oracle Big Data Appliance—Hardware
Now that we have some idea of the hardware and
configuration requirements from our NoSQL and Hadoop
use cases, the big question is, do we want to buy Oracle
Big Data Appliance, or just run the software on our own
cluster?

The Big Data Appliance (BDA) has 18 Sun x4270 M2 servers
per rack. Each node has 48GB RAM, 12 (Intel Xeon 5675)
cores, and 12 disks of 3TB each. Notably, there are no SSD
and 36TB storage per node is far above what we planned for.

For our NoSQL applications, we need to re-plan our cluster.
Our 60TB disk space requirement can now be satisfied
from just two servers, but our IOP requirements will still
demand 30. Additional appliances can be purchased and
connected to grow the cluster, but perhaps a smarter move
will be to purchase the memory upgrade, get the servers
with 144GB RAM, and reduce the latency by having a better
cache hit ratio rather than more disks.

For our Hadoop cluster, we will notice that we get 1 HD and
at least 4GB RAM per core. This gives more memory and
processing per disk space that most Hadoop workloads would
require. To maximize the utilization on a machine, the
memory can be expended to 144GB RAM, and memory-hungry
Oracle NoSQL can be co-located with disk-hungry Hadoop.

“If Oracle Big Data Appliance matches your
hardware requirements, it is not a bad way

to get the entire cluster preconfigured.”

sales@pythian.com www.pythian.com

As far as I know, this configuration was not tested by
Oracle, so testing will be needed to make sure it doesn’t
overload the servers.

The biggest benefit Oracle Big Data has to offer for Hadoop
clusters is the Infiniband (IB) network. As we discussed,
HDFS replication and communication between map/reduce
tasks requires significant amounts of bandwidth. With
Infiniband, the problem is solved. If your Hadoop use case
requires loading the results into your Oracle data warehouse,
and it happened to be running on Exadata, IB can be used
to connect Big Data Appliance to Exadata and speed up the
data-loading process.

Oracle Big Data Appliance is sold for around $500,000. Dell
sells servers with six cores, 16GB RAM, and 12TB HD for
around $6,000. Fifty-four of those will cost $324,000 and
have more cores and the same amounts of memory and
storage as Oracle’s offering. Of course, if my data processing
is using a lot of network capacity, we’ll need to add Infiniband
to the mix, which will bring the total cost up. Either way,
a cluster of this size will cost close to a half-million dollars,
so if Oracle Big Data Appliance matches your hardware
requirements, it is not a bad way to get the entire cluster
pre-configured in one big box.

