Share this
Replicating MySQL to Snowflake with Kafka and Debezium—Part Two: Data Ingestion
by Jose Rodriguez on May 17, 2021 12:00:00 AM
Here we go again
Hello, and welcome to this second part of my “Replicating MySQL to Snowflake” series. If you landed here from a web search and missed part one, you can take a look here: part one.
What’s up?
In this second part, I’ll be demonstrating how to ingest data from Kafka into Snowflake using the Snowflake Connector for Kafka.
In part one I showed the diagram for this architecture and how to implement the first half of it.
A reminder on the environment:
- OS: Ubuntu 20.04.2 LTS
- MySQL: Ver 8.0.24 for Linux on x86_64 (MySQL Community Server—GPL)
- ZooKeeper: Apache ZooKeeper, version 3.7.0 2021-03-17 09:46 UTC
- Kafka: 2.8.0
- Scala (included with Kafka): 2.8.0
- Debezium: 2.13 final
- Snowflake Kafka connector (OSS version): 1.5.2 (Maven)
- Snowflake: Enterprise edition (AWS)
This time I’ll be showing the second piece of the puzzle which includes installing and configuring the Snowflake Connector for Kafka and the creation of the Snowflake pieces to ingest the data.
Snowflake target database
For this POC (proof of concept), I used my AWS-hosted trial account that includes one month of access and 400USD in credits. I’ve chosen the Enterprise Edition, but a Standard Edition should be good enough for a similar POC.
I created a dedicated database and schema along with a warehouse. This allows me to easily clean up once I’m done. These come with a newly created role and user dedicated solely for data ingestion purposes.
Having dedicated resources for particular activities is a best practice not only for Snowflake but also for any other database you may be working with. It makes things a lot easier to maintain and audit.
I followed the instructions provided by Snowflake to determine the bare minimum grants this new role requires. As you probably know, this is another best practice.
And here’s the script:
use role sysadmin; create warehouse if not exists wh_ingest warehouse_size = xsmall; create database if not exists mysql_ingest; create schema if not exists mysql_ingest.landing; use role securityadmin; create role if not exists r_mysql_rep; grant all on database mysql_ingest to role r_mysql_rep; grant all on schema mysql_ingest.landing to role r_mysql_rep; grant all on warehouse wh_ingest to role r_mysql_rep; create user if not exists mysql_rep identified by 'XXXXXXXXXXXXXXXXX'; grant role r_mysql_rep to user mysql_rep; grant role r_mysql_rep to role accountadmin; grant role r_mysql_rep to role sysadmin; alter user mysql_rep set DEFAULT_WAREHOUSE=wh_ingest; alter user mysql_rep set DEFAULT_NAMESPACE=mysql_ingest.landing; alter user mysql_rep set default_role=r_mysql_rep;
That’s it—nothing else is required.
You’ll notice that I haven’t created any tables. While there’s an option to point the connector to write into an existing table I kept to my simplicity motto for this POC and let the connector create the tables for me.
I’ll review the landing table structure later on.
Installing the Snowflake Connector for Kafka
I followed the instructions provided in the Snowflake documentation.
The connector requires Kafka and a JDK (Java Development Kit)—Standard Edition is good enough. These two elements are already installed for the CDC (change data capture) part of the process (see part one of the series) so I won’t install them again.
This POC will fully run on a single virtual machine but a real production scenario may require a different configuration to deal with the higher amount of data to process.
The connector itself is just a JAR (Java archive) file available in the Maven repository: https://mvnrepository.com/artifact/com.snowflake/snowflake-kafka-connector.
Simply download both the JAR and its corresponding MD5 files:
jose@localhost:~$ wget https://repo1.maven.org/maven2/com/snowflake/snowflake-kafka-connector/1.5.2/snowflake-kafka-connector-1.5.2.jar jose@localhost:~$ wget https://repo1.maven.org/maven2/com/snowflake/snowflake-kafka-connector/1.5.2/snowflake-kafka-connector-1.5.2.jar.md5
Verify that the MD5 sum of the downloaded file matches with the reported MD5 sum stored in the Maven repository.
I’ll be using an encrypted private key for authentication, so I need the Bouncy Castle plugin, available in Maven as well.
jose@localhost:~$ wget https://repo1.maven.org/maven2/org/bouncycastle/bc-fips/1.0.1/bc-fips-1.0.1.jar jose@localhost:~$ wget https://repo1.maven.org/maven2/org/bouncycastle/bc-fips/1.0.1/bc-fips-1.0.1.jar.md5 jose@localhost:~$ wget https://repo1.maven.org/maven2/org/bouncycastle/bcpkix-fips/1.0.3/bcpkix-fips-1.0.3.jar jose@localhost:~$ wget https://repo1.maven.org/maven2/org/bouncycastle/bcpkix-fips/1.0.3/bcpkix-fips-1.0.3.jar.md5
Again, don’t forget to check the MD5 sum values. This is your data potentially going out into the wild, wild Internet and you want the maximum protection possible, which starts with installing untainted software.
Note: Debezium generates JSON (JavaScript Object Notation) data in the Kafka topic so I’m skipping everything Avro-related in the documentation.
All these files must exist in the <kafka_dir>/libs folder so make sure you copy them into there.
The following is from the documentation and it’s important for a production system with a multinode Kafka cluster: “The Kafka Connect framework broadcasts the configuration settings for the Kafka connector from the master node to worker nodes. The configuration settings include sensitive information (specifically, the Snowflake username and private key). Make sure to secure the communication channel between Kafka Connect nodes. For instructions, see the documentation for your Apache Kafka software.”
The connector uses key pair authentication to connect to Snowflake so I’m going to need a 2048-bit (minimum) RSA key pair.
I created an encrypted private key file with the following command:
jose@localhost:~$ openssl genrsa 2048 | openssl pkcs8 -topk8 -v2 aes256 -inform PEM -out rsa_key.p8 Generating RSA private key, 2048 bit long modulus (2 primes) .............................................................................+++++ ......................+++++ e is 65537 (0x010001) Enter Encryption Password: Verifying - Enter Encryption Password:
Remove the header, footer and line breaks from the key to use it in the configuration file (snowflake-connector-animals.properties):
jose@localhost:~$ grep -v PRIVATE rsa_key.p8 | sed ':a;N;$!ba;s/\n/ /g'
Generate the public key out of the private one with the following command:
jose@localhost:~$ openssl rsa -in rsa_key.p8 -pubout -out rsa_key.pub Enter pass phrase for rsa_key.p8: writing RSA key
As before, trim the public key file to use it to enable our Snowflake user to connect using a private key pair like so:
jose@localhost:~$ grep -v PUBLIC rsa_key.pub | sed ':a;N;$!ba;s/\n//g'
Connect to your Snowflake database and execute the following SQL using the result of the previous command:
alter user mysql_rep set rsa_public_key='---REDACTED---'
This is a POC but these files still grant access to a live Snowflake account so make sure you secure them with proper permissions—typically 600 in Linux—and in a separate folder. Especially if you use Git or similar, don’t include these files in the repository. The Snowflake documentation suggests the use of an externalized secret store like AWS Key Management Service (KMS), Microsoft Azure Key Vault or HashiCorp Vault, which sounds like a very good idea for a production environment, if you ask me.
This is how the user looks in Snowflake:
Connector configuration
A connector configuration file specifies the source tables and corresponding Kafka topics. These tables must reside in the same database and schema in the source system. So, I created a single file for my single replicated table.
The file is stored in the Kafka config directory as snowflake-connector-animals.properties.
name=mysql_animals connector.class=com.snowflake.kafka.connector.SnowflakeSinkConnector tasks.max=2 topics=snowflake_source.snowflake_source.animals buffer.count.records=10000 buffer.flush.time=60 buffer.size.bytes=5000000 snowflake.url.name=https://XXXXXX.ca-central-1.snowflakecomputing.com snowflake.user.name=mysql_rep snowflake.private.key=---REDACTED--- snowflake.private.key.passphrase=---REDACTED--- snowflake.database.name=mysql_ingest snowflake.schema.name=landing key.converter=org.apache.kafka.connect.storage.StringConverter value.converter=com.snowflake.kafka.connector.records.SnowflakeJsonConverter
Warning: Although the documentation clearly states that the HTTPS:// and port number are optional in the snowflake.url.name parameter, this doesn’t seem to be the case. I learned this the hard way after a long hour trying to figure out why my configuration was wrong. So, use the full account URL in the configuration file.
There’s also another caveat with Snowflake account URLs. Depending on the cloud provider you’ve chosen, it may or may not include a cloud “identifier” in the url. For example the trial account URL I’m using for this POC includes “aws” as it is in my browser.
https://XXXXX.ca-central-1.aws.snowflakecomputing.com
This URL returns an error when I remove the “aws” part and try to access my account with it. But—and this is a big but—the URL I have to use to get the connector to work is the one without that piece:
https://XXXXX.ca-central-1.snowflakecomputing.com:443
Yes, exactly, it doesn’t include the “aws” portion. In a different POC I was using a GCP-hosted account and I hit the issue the other way round. My program wouldn’t connect unless I added the “gcp” piece to the URL.
This was quite confusing and a source of long troubleshooting hours for initial setups, at least for me.
For future reference, if you find this error message in the Kafka Connector, just start fiddling with the URL until you make it right. Sorry, I can’t be of more help than that.
Caused by: org.apache.kafka.connect.runtime.rest.errors.BadRequestException: Connector configuration is invalid and contains the following 3 error(s): snowflake.url.name: Cannot connect to Snowflake snowflake.user.name: Cannot connect to Snowflake snowflake.private.key: Cannot connect to Snowflake
DISCLAIMER: While the issue above was present during my testing, at the moment of finishing this post it was no longer present and the correct URL is the one including the “aws” part. Snowflake deploys new versions every Friday so it may be the case that they changed something that has now made this behavior consistent. I decided to leave the information in the post in case a similar issue arose somewhere else. |
While I’m using a single Kafka installation for both the Debezium (CDC) and the Snowflake connectors I need different configuration files to avoid port collisions.
So I created a standalone connector configuration file connect-standalone-write.properties as a copy of connect-standalone.properties adding a custom rest.port of 8084. This isn’t a port we’ll be using in this POC but I had to change it anyway.
jose@localhost:~$ grep -v ^# ./kafka_2.13-2.8.0/config/connect-standalone-write.properties bootstrap.servers=localhost:9092 rest.port=8084 key.converter=org.apache.kafka.connect.json.JsonConverter value.converter=org.apache.kafka.connect.json.JsonConverter key.converter.schemas.enable=true value.converter.schemas.enable=true offset.storage.file.filename=/tmp/connect_write.offsets offset.flush.interval.ms=10000 plugin.path=/Pythian/Pythian-internal/SnowFlake_dev/MySQL-SF-replication/kafka-plugins topic.creation.enable=true
As I explained in part one, all the connectors brought up in a single Kafka deployment will share the same log file, making it very difficult to troubleshoot any issues.
To avoid this I use the following command to direct the collector output to a log file defined by me:
jose@localhost:~$ nohup ./kafka_2.13-2.8.0/bin/connect-standalone.sh ./kafka_2.13-2.8.0/config/connect-standalone-write.properties ./kafka_2.13-2.8.0/config/snowflake-connector-animals.properties > snowflake_connector_`date "+%F_%H-%M"`.log 2>&1 &
And this is the final output expected:
[2021-04-28 13:51:07,698] INFO Started o.e.j.s.ServletContextHandler@30ec7d21{/,null,AVAILABLE} (org.eclipse.jetty.server.handler.ContextHandler:916) [2021-04-28 13:51:07,699] INFO REST resources initialized; server is started and ready to handle requests (org.apache.kafka.connect.runtime.rest.RestServer:319) [2021-04-28 13:51:07,699] INFO Kafka Connect started (org.apache.kafka.connect.runtime.Connect:57)
Showing off (AKA testing)
After all this is set up it’s time to demonstrate how the end-to-end replication works.
In part one I showed what a Kafka message looks like when the CDC starts up for the first time and Debezium collects a snapshot of the tables to be replicated.
Beware of this behavior in heavily used production systems as the overall performance of the system may be impacted.
I have the following list of commands to start the replication end to end. I don’t call this a script because it can’t be executed as-is to start the whole system due to the time it takes for Kafka to be up and running. So, if you run it and hit some weird error messages, just give Kafka a few minutes to finish starting up, verify that it is up and running then start the collectors.
#start replication pieces in order # Start zookeeper sudo ./apache-zookeeper-3.7.0-bin/bin/zkServer.sh start # Test it is up and running # apache-zookeeper-3.7.0-bin/bin/zkCli.sh -server 127.0.0.1:2181 # Start Kafka broker ./kafka_2.13-2.8.0/bin/kafka-server-start.sh -daemon ./kafka_2.13-2.8.0/config/server.properties # List topics as validation # kafka_2.13-2.8.0/bin/kafka-topics.sh --list --zookeeper localhost:2181 # Start Debezium MySQL connector - Not using the -daemon option to get different log files. nohup ./kafka_2.13-2.8.0/bin/connect-standalone.sh ./kafka_2.13-2.8.0/config/connect-standalone.properties ./kafka_2.13-2.8.0/config/mysql-debezium.properties > debezium_connector_`date "+%F_%H-%M"`.log 2>&1 & # Start Snowflake Kafka connector nohup ./kafka_2.13-2.8.0/bin/connect-standalone.sh ./kafka_2.13-2.8.0/config/connect-standalone-write.properties ./kafka_2.13-2.8.0/config/snowflake-connector-animals.properties > snowflake_connector_`date "+%F_%H-%M"`.log 2>&1 & # View Kafka topic contents # ./kafka_2.13-2.8.0/bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --from-beginning --topic snowflake_source.snowflake_source.animals
Once everything’s running, we can see the following messages in the Debezium collector log file:
[2021-05-03 10:43:33,423] INFO WorkerSourceTask{id=mysql-connector-0} flushing 0 outstanding messages for offset commit (org.apache.kafka.connect.runtime.WorkerSourceTask:487)
They basically say that there’s no work to be done.
There will be references to the initial snapshot being made if a new table has been added to the replication.
In the Snowflake Connector we can see how the new connector is created, along with the pipes, stages and landing tables corresponding to each of the source tables:
(...) [2021-05-03 10:02:07,225] INFO Finished creating connector mysql_animals (org.apache.kafka.connect.runtime.Worker:310) (...) [2021-05-03 10:02:09,098] INFO [SF_KAFKA_CONNECTOR] initialized the pipe connector for pipe mysql_ingest.landing.SNOWFLAKE_KAFKA_CONNECTOR_mysql_animals_PIPE_snowflake_source_snowflake_source_puppies_741515570_0 (com.snowflake.kafka.conne [2021-05-03 10:02:09,100] INFO (...) [2021-05-03 10:02:10,599] INFO [SF_KAFKA_CONNECTOR] Creating new stage SNOWFLAKE_KAFKA_CONNECTOR_mysql_animals_STAGE_snowflake_source_snowflake_source_puppies_741515570. (com.snowflake.kafka.connector.internal.SnowflakeSinkServiceV1:79) (...) [2021-05-03 10:02:11,915] INFO [SF_KAFKA_CONNECTOR] Creating new table snowflake_source_snowflake_source_animals_106896695. (com.snowflake.kafka.connector.internal.SnowflakeSinkServiceV1:79)
And the actual objects as seen from Snowflake. The funny names are automatically generated by the connector.
mysql_rep#WH_INGEST@MYSQL_INGEST.LANDING>show PIPES; +-------------------------------+----------------------------------------------------------------------------------------------------+---------------+-------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------+----------------------+---------+-------------+---------+ | created_on | name | database_name | schema_name | definition | owner | notification_channel | comment | integration | pattern | |-------------------------------+----------------------------------------------------------------------------------------------------+---------------+-------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------+----------------------+---------+-------------+---------| | 2021-05-03 01:02:13.943 -0700 | SNOWFLAKE_KAFKA_CONNECTOR_MYSQL_ANIMALS_PIPE_SNOWFLAKE_SOURCE_SNOWFLAKE_SOURCE_ANIMALS_106896695_0 | MYSQL_INGEST | LANDING | copy into snowflake_source_snowflake_source_animals_106896695(RECORD_METADATA, RECORD_CONTENT) from (select $1:meta, $1:content from @SNOWFLAKE_KAFKA_CONNECTOR_mysql_animals_STAGE_snowflake_source_snowflake_source_animals_106896695 t) file_format = (type = 'json') | R_MYSQL_REP | NULL | | NULL | NULL | +-------------------------------+----------------------------------------------------------------------------------------------------+---------------+-------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------+----------------------+---------+-------------+---------+ 1 Row(s) produced. Time Elapsed: 1.037s mysql_rep#WH_INGEST@MYSQL_INGEST.LANDING>show STAGES; +-------------------------------+---------------------------------------------------------------------------------------------------+---------------+-------------+-----+-----------------+--------------------+-------------+---------+--------+----------+-------+----------------------+---------------------+ | created_on | name | database_name | schema_name | url | has_credentials | has_encryption_key | owner | comment | region | type | cloud | notification_channel | storage_integration | |-------------------------------+---------------------------------------------------------------------------------------------------+---------------+-------------+-----+-----------------+--------------------+-------------+---------+--------+----------+-------+----------------------+---------------------| | 2021-05-03 01:02:13.413 -0700 | SNOWFLAKE_KAFKA_CONNECTOR_MYSQL_ANIMALS_STAGE_SNOWFLAKE_SOURCE_SNOWFLAKE_SOURCE_ANIMALS_106896695 | MYSQL_INGEST | LANDING | | N | N | R_MYSQL_REP | | NULL | INTERNAL | NULL | NULL | NULL | +-------------------------------+---------------------------------------------------------------------------------------------------+---------------+-------------+-----+-----------------+--------------------+-------------+---------+--------+----------+-------+----------------------+---------------------+ 1 Row(s) produced. Time Elapsed: 0.890s mysql_rep#WH_INGEST@MYSQL_INGEST.LANDING>show TABLES; +-------------------------------+-----------------------------------------------------+---------------+-------------+-------+---------+------------+------+-------+-------------+----------------+----------------------+-----------------+---------------------+------------------------------+---------------------------+-------------+ | created_on | name | database_name | schema_name | kind | comment | cluster_by | rows | bytes | owner | retention_time | automatic_clustering | change_tracking | search_optimization | search_optimization_progress | search_optimization_bytes | is_external | |-------------------------------+-----------------------------------------------------+---------------+-------------+-------+---------+------------+------+-------+-------------+----------------+----------------------+-----------------+---------------------+------------------------------+---------------------------+-------------| | 2021-05-03 01:02:12.769 -0700 | SNOWFLAKE_SOURCE_SNOWFLAKE_SOURCE_ANIMALS_106896695 | MYSQL_INGEST | LANDING | TABLE | | | 10 | 34816 | R_MYSQL_REP | 1 | OFF | OFF | OFF | NULL | NULL | N | +-------------------------------+-----------------------------------------------------+---------------+-------------+-------+---------+------------+------+-------+-------------+----------------+----------------------+-----------------+---------------------+------------------------------+---------------------------+-------------+ 1 Row(s) produced. Time Elapsed: 1.136s
Now here comes the real thing.
I start with a table with a few rows in it:
jose@localhost:[snowflake_source]> select * from animals; +----+---------+ | id | name | +----+---------+ | 1 | dog | | 2 | cat | | 3 | penguin | | 4 | lax | | 5 | whale | | 6 | ostrich | | 7 | newt | | 8 | snake | | 9 | frog | | 10 | dragon | +----+---------+ 10 rows in set (0,00 sec) jose@localhost:[snowflake_source]> insert into animals (name) values ('lizard'); Query OK, 1 row affected (0,00 sec) jose@localhost:[snowflake_source]> select * from animals; +----+---------+ | id | name | +----+---------+ | 1 | dog | | 2 | cat | | 3 | penguin | | 4 | lax | | 5 | whale | | 6 | ostrich | | 7 | newt | | 8 | snake | | 9 | frog | | 10 | dragon | | 11 | lizard | +----+---------+ 11 rows in set (0,00 sec)
Which is immediately captured by the MySQL connector as shown in the log:
[2021-05-03 10:58:36,158] INFO 1 records sent during previous 00:57:03.353, last recorded offset: {transaction_id=null, ts_sec=1620032315, file=binlog.000058, pos=235, row=1, server_id=1, event=2} (io.debezium.connector.common.BaseSourceTask:182)
And sent over to Snowflake by the writer:
[2021-05-03 10:58:43,367] INFO Created Insert Request : https://XXXXXX.west-us-2.azure.snowflakecomputing.com:443/v1/data/pipes/mysql_ingest.landing.SNOWFLAKE_KAFKA_CONNECTOR_mysql_animals_PIPE_snowflake_source_snowflake_source_animals_106896695_0/insertFiles?requestId=0f10041c-817c-4cd1-a6ce-bc1ef1b609ec&showSkippedFiles=false (net.snowflake.ingest.connection.RequestBuilder:471)
The Kafka message is JSON and it contains two main parts: SCHEMA and PAYLOAD. Note the PAYLOAD section does not include data in the BEFORE entry. An update will include this information for further processing once in Snowflake.
{ "schema": { "type": "struct", "fields": [ { "type": "struct", "fields": [ { "type": "int32", "optional": false, "field": "id" }, { "type": "string", "optional": false, "field": "name" } ], "optional": true, "name": "snowflake_source.snowflake_source.animals.Value", "field": "before" }, { "type": "struct", "fields": [ { "type": "int32", "optional": false, "field": "id" }, { "type": "string", "optional": false, "field": "name" } ], "optional": true, "name": "snowflake_source.snowflake_source.animals.Value", "field": "after" }, { "type": "struct", "fields": [ { "type": "string", "optional": false, "field": "version" }, { "type": "string", "optional": false, "field": "connector" }, { "type": "string", "optional": false, "field": "name" }, { "type": "int64", "optional": false, "field": "ts_ms" }, { "type": "string", "optional": true, "name": "io.debezium.data.Enum", "version": 1, "parameters": { "allowed": "true,last,false" }, "default": "false", "field": "snapshot" }, { "type": "string", "optional": false, "field": "db" }, { "type": "string", "optional": true, "field": "sequence" }, { "type": "string", "optional": true, "field": "table" }, { "type": "int64", "optional": false, "field": "server_id" }, { "type": "string", "optional": true, "field": "gtid" }, { "type": "string", "optional": false, "field": "file" }, { "type": "int64", "optional": false, "field": "pos" }, { "type": "int32", "optional": false, "field": "row" }, { "type": "int64", "optional": true, "field": "thread" }, { "type": "string", "optional": true, "field": "query" } ], "optional": false, "name": "io.debezium.connector.mysql.Source", "field": "source" }, { "type": "string", "optional": false, "field": "op" }, { "type": "int64", "optional": true, "field": "ts_ms" }, { "type": "struct", "fields": [ { "type": "string", "optional": false, "field": "id" }, { "type": "int64", "optional": false, "field": "total_order" }, { "type": "int64", "optional": false, "field": "data_collection_order" } ], "optional": true, "field": "transaction" } ], "optional": false, "name": "snowflake_source.snowflake_source.animals.Envelope" }, "payload": { "before": null, "after": { "id": 11, "name": "lizard" }, "source": { "version": "1.5.0.Final", "connector": "mysql", "name": "snowflake_source", "ts_ms": 1620032315000, "snapshot": "false", "db": "snowflake_source", "sequence": null, "table": "animals", "server_id": 1, "gtid": null, "file": "binlog.000058", "pos": 395, "row": 0, "thread": null, "query": null }, "op": "c", "ts_ms": 1620032315737, "transaction": null } }
These two parts are inserted as two different columns in the target table:
mysql_rep#WH_INGEST@MYSQL_INGEST.LANDING>desc TABLE SNOWFLAKE_SOURCE_SNOWFLAKE_SOURCE_ANIMALS_106896695; +-----------------+---------+--------+-------+---------+-------------+------------+-------+------------+---------+-------------+ | name | type | kind | null? | default | primary key | unique key | check | expression | comment | policy name | |-----------------+---------+--------+-------+---------+-------------+------------+-------+------------+---------+-------------| | RECORD_METADATA | VARIANT | COLUMN | Y | NULL | N | N | NULL | NULL | NULL | NULL | | RECORD_CONTENT | VARIANT | COLUMN | Y | NULL | N | N | NULL | NULL | NULL | NULL | +-----------------+---------+--------+-------+---------+-------------+------------+-------+------------+---------+-------------+ 2 Row(s) produced. Time Elapsed: 1.111s
As you can see, the data type for both columns is VARIANT as expected when inserting JSON data into Snowflake.
This data type requires some fancy SQL to be used to extract relevant information. A very basic query using the FLATTEN function follows:
select f.path,f.value from "MYSQL_INGEST"."LANDING"."SNOWFLAKE_SOURCE_SNOWFLAKE_SOURCE_ANIMALS_106896695" p, lateral flatten(input => p.RECORD_CONTENT:payload, recursive => true) f where f.seq=2
Which returns, in my case, the following information:
PATH | VALUE |
after | { “id”: 11, “name”: “lizard” } |
after.id | 11 |
after.name | lizard |
before | null |
op | r |
source | { “connector”: “mysql”, “db”: “snowflake_source”, “file”: “binlog.000058”, … |
source.connector | mysql |
source.db | snowflake_source |
source.file | binlog.000058 |
source.gtid | null |
source.name | snowflake_source |
source.pos | 156 |
source.query | null |
source.row | 0 |
source.sequence | null |
source.server_id | 0 |
source.snapshot | true |
source.table | animals |
source.thread | null |
source.ts_ms | 1620028850302 |
source.version | 1.5.0.Final |
transaction | null |
ts_ms | 1620028850310 |
And that’s it
Well, not really. I haven’t covered DDL (data definition language) which isn’t currently supported out of the box. Handling DDL isn’t trivial and different approaches have been proposed.
I also haven’t provided any ideas on how to leverage the ingested data, but a very simple way would be to create a pipe triggered on new CDC data arriving into the landing table and populating a slowly changing dimension like a table. Should you need such help don’t hesitate to reach out to our sales team.
Finally, if you read all the way to the end, thank you and don’t forget to comment if you find any issues or something is missing or wrong.
Enjoy!
Share this
- Technical Track (967)
- Oracle (400)
- MySQL (137)
- Cloud (128)
- Open Source (90)
- Google Cloud (81)
- DBA Lounge (76)
- Microsoft SQL Server (76)
- Technical Blog (74)
- Big Data (52)
- AWS (49)
- Google Cloud Platform (46)
- Cassandra (44)
- DevOps (41)
- Azure (38)
- Pythian (33)
- Linux (30)
- Database (26)
- Podcasts (25)
- Site Reliability Engineering (25)
- Performance (24)
- SQL Server (24)
- Microsoft Azure (23)
- Oracle E-Business Suite (23)
- PostgreSQL (23)
- Oracle Database (22)
- Docker (21)
- Group Blog Posts (20)
- Security (20)
- DBA (19)
- Log Buffer (19)
- SQL (19)
- Exadata (18)
- Mongodb (18)
- Oracle Cloud Infrastructure (OCI) (18)
- Oracle Exadata (18)
- Automation (17)
- Hadoop (16)
- Oracleebs (16)
- Amazon RDS (15)
- Ansible (15)
- Ebs (15)
- Snowflake (15)
- ASM (13)
- BigQuery (13)
- Patching (13)
- RDS (13)
- Replication (13)
- Advanced Analytics (12)
- Data (12)
- GenAI (12)
- Kubernetes (12)
- Oracle 12C (12)
- Backup (11)
- LLM (11)
- Machine Learning (11)
- OCI (11)
- Rman (11)
- Cloud Migration (10)
- Datascape Podcast (10)
- Monitoring (10)
- R12 (10)
- 12C (9)
- AI (9)
- Apache Cassandra (9)
- Data Guard (9)
- Infrastructure (9)
- Oracle 19C (9)
- Oracle Applications (9)
- Python (9)
- Series (9)
- AWR (8)
- Amazon Web Services (AWS) (8)
- Articles (8)
- High Availability (8)
- Oracle EBS (8)
- Percona (8)
- Powershell (8)
- Recovery (8)
- Weblogic (8)
- Apache Beam (7)
- Backups (7)
- Data Governance (7)
- Goldengate (7)
- Innodb (7)
- Migration (7)
- Myrocks (7)
- OEM (7)
- Oracle Enterprise Manager (OEM) (7)
- Performance Tuning (7)
- Authentication (6)
- ChatGPT-4 (6)
- Data Enablement (6)
- Data Visualization (6)
- Database Performance (6)
- E-Business Suite (6)
- Fmw (6)
- Grafana (6)
- Oracle Enterprise Manager (6)
- Orchestrator (6)
- Postgres (6)
- Rac (6)
- Renew Refresh Republish (6)
- RocksDB (6)
- Serverless (6)
- Upgrade (6)
- 19C (5)
- Azure Data Factory (5)
- Azure Synapse Analytics (5)
- Cpu (5)
- Disaster Recovery (5)
- Error (5)
- Generative AI (5)
- Google BigQuery (5)
- Indexes (5)
- Love Letters To Data (5)
- Mariadb (5)
- Microsoft (5)
- Proxysql (5)
- Scala (5)
- Sql Server Administration (5)
- VMware (5)
- Windows (5)
- Xtrabackup (5)
- Airflow (4)
- Analytics (4)
- Apex (4)
- Best Practices (4)
- Centrally Managed Users (4)
- Cli (4)
- Cloud Spanner (4)
- Cockroachdb (4)
- Configuration Management (4)
- Container (4)
- Data Management (4)
- Data Pipeline (4)
- Data Security (4)
- Data Strategy (4)
- Database Administrator (4)
- Database Management (4)
- Database Migration (4)
- Dataflow (4)
- Dbsat (4)
- Elasticsearch (4)
- Fahd Mirza (4)
- Fusion Middleware (4)
- Google (4)
- Io (4)
- Java (4)
- Kafka (4)
- Middleware (4)
- Mysql 8 (4)
- Network (4)
- Ocidtab (4)
- Opatch (4)
- Oracle Autonomous Database (Adb) (4)
- Oracle Cloud (4)
- Pitr (4)
- Post-Mortem Analysis (4)
- Prometheus (4)
- Redhat (4)
- September 9Th 2015 (4)
- Sql2016 (4)
- Ssl (4)
- Terraform (4)
- Workflow (4)
- 2Fa (3)
- Alwayson (3)
- Amazon Relational Database Service (Rds) (3)
- Apache Kafka (3)
- Apexexport (3)
- Aurora (3)
- Azure Sql Db (3)
- Business Intelligence (3)
- Cdb (3)
- ChatGPT (3)
- Cloud Armor (3)
- Cloud Database (3)
- Cloud FinOps (3)
- Cloud Security (3)
- Cluster (3)
- Consul (3)
- Cosmos Db (3)
- Covid19 (3)
- Crontab (3)
- Data Analytics (3)
- Data Integration (3)
- Database 12C (3)
- Database Monitoring (3)
- Database Troubleshooting (3)
- Database Upgrade (3)
- Databases (3)
- Dataops (3)
- Dbt (3)
- Digital Transformation (3)
- ERP (3)
- Google Chrome (3)
- Google Cloud Sql (3)
- Graphite (3)
- Haproxy (3)
- Heterogeneous Database Migration (3)
- Hugepages (3)
- Inside Pythian (3)
- Installation (3)
- Json (3)
- Keras (3)
- Ldap (3)
- Liquibase (3)
- Love Letter (3)
- Lua (3)
- Mfa (3)
- Multitenant (3)
- Mysql 5.7 (3)
- Mysql Configuration (3)
- Nginx (3)
- Nodetool (3)
- Non-Tech Articles (3)
- Oem 13C (3)
- Oms (3)
- Oracle 18C (3)
- Oracle Data Guard (3)
- Oracle Live Sql (3)
- Oracle Rac (3)
- Patch (3)
- Perl (3)
- Pmm (3)
- Pt-Online-Schema-Change (3)
- Rdbms (3)
- Recommended (3)
- Remote Teams (3)
- Reporting (3)
- Reverse Proxy (3)
- S3 (3)
- Spark (3)
- Sql On The Edge (3)
- Sql Server Configuration (3)
- Sql Server On Linux (3)
- Ssis (3)
- Ssis Catalog (3)
- Stefan Knecht (3)
- Striim (3)
- Sysadmin (3)
- System Versioned (3)
- Systemd (3)
- Temporal Tables (3)
- Tensorflow (3)
- Tools (3)
- Tuning (3)
- Vasu Balla (3)
- Vault (3)
- Vulnerability (3)
- Waf (3)
- 18C (2)
- Adf (2)
- Adop (2)
- Agent (2)
- Agile (2)
- Amazon Data Migration Service (2)
- Amazon Ec2 (2)
- Amazon S3 (2)
- Apache Flink (2)
- Apple (2)
- Apps (2)
- Ashdump (2)
- Atp (2)
- Audit (2)
- Automatic Backups (2)
- Autonomous (2)
- Autoupgrade (2)
- Awr Data Mining (2)
- Azure Sql (2)
- Azure Sql Data Sync (2)
- Bash (2)
- Business (2)
- Caching (2)
- Cassandra Nodetool (2)
- Cdap (2)
- Certification (2)
- Cloning (2)
- Cloud Cost Optimization (2)
- Cloud Data Fusion (2)
- Cloud Hosting (2)
- Cloud Infrastructure (2)
- Cloud Shell (2)
- Cloud Sql (2)
- Cloudscape (2)
- Cluster Level Consistency (2)
- Conferences (2)
- Consul-Template (2)
- Containerization (2)
- Containers (2)
- Cosmosdb (2)
- Cost Management (2)
- Costs (2)
- Cql (2)
- Cqlsh (2)
- Cyber Security (2)
- Data Analysis (2)
- Data Discovery (2)
- Data Engineering (2)
- Data Migration (2)
- Data Modeling (2)
- Data Quality (2)
- Data Streaming (2)
- Data Warehouse (2)
- Database Consulting (2)
- Database Migrations (2)
- Dataguard (2)
- Datapump (2)
- Ddl (2)
- Debezium (2)
- Dictionary Views (2)
- Dms (2)
- Docker-Composer (2)
- Dr (2)
- Duplicate (2)
- Ecc (2)
- Elastic (2)
- Elastic Stack (2)
- Em12C (2)
- Encryption (2)
- Enterprise Data Platform (EDP) (2)
- Enterprise Manager (2)
- Etl (2)
- Events (2)
- Exachk (2)
- Filter Driver (2)
- Flume (2)
- Full Text Search (2)
- Galera (2)
- Gemini (2)
- General Purpose Ssd (2)
- Gh-Ost (2)
- Gke (2)
- Google Workspace (2)
- Hanganalyze (2)
- Hdfs (2)
- Health Check (2)
- Historical Trends (2)
- Incremental (2)
- Infiniband (2)
- Infrastructure As Code (2)
- Innodb Cluster (2)
- Innodb File Structure (2)
- Innodb Group Replication (2)
- Install (2)
- Internals (2)
- Java Web Start (2)
- Kibana (2)
- Log (2)
- Log4J (2)
- Logs (2)
- Memory (2)
- Merge Replication (2)
- Metrics (2)
- Mutex (2)
- MySQLShell (2)
- NLP (2)
- Neo4J (2)
- Node.Js (2)
- Nosql (2)
- November 11Th 2015 (2)
- Ntp (2)
- Oci Iam (2)
- Oem12C (2)
- Omspatcher (2)
- Opatchauto (2)
- Open Source Database (2)
- Operational Excellence (2)
- Oracle 11G (2)
- Oracle Datase (2)
- Oracle Extended Manager (Oem) (2)
- Oracle Flashback (2)
- Oracle Forms (2)
- Oracle Installation (2)
- Oracle Io Testing (2)
- Pdb (2)
- Podcast (2)
- Power Bi (2)
- Puppet (2)
- Pythian Europe (2)
- R12.2 (2)
- Redshift (2)
- Remote DBA (2)
- Remote Sre (2)
- SAP HANA Cloud (2)
- Sap Migration (2)
- Scale (2)
- Schema (2)
- September 30Th 2015 (2)
- September 3Rd 2015 (2)
- Shell (2)
- Simon Pane (2)
- Single Sign-On (2)
- Sql Server On Gke (2)
- Sqlplus (2)
- Sre (2)
- Ssis Catalog Error (2)
- Ssisdb (2)
- Standby (2)
- Statspack Mining (2)
- Systemstate Dump (2)
- Tablespace (2)
- Technical Training (2)
- Tempdb (2)
- Tfa (2)
- Throughput (2)
- Tls (2)
- Tombstones (2)
- Transactional Replication (2)
- User Groups (2)
- Vagrant (2)
- Variables (2)
- Virtual Machine (2)
- Virtual Machines (2)
- Virtualbox (2)
- Web Application Firewall (2)
- Webinars (2)
- X5 (2)
- scalability (2)
- //Build2019 (1)
- 11G (1)
- 12.1 (1)
- 12Cr1 (1)
- 12Cr2 (1)
- 18C Grid Installation (1)
- 2022 (1)
- 2022 Snowflake Summit (1)
- AI Platform (1)
- AI Summit (1)
- Actifio (1)
- Active Directory (1)
- Adaptive Hash Index (1)
- Adf Custom Email (1)
- Adobe Flash (1)
- Adrci (1)
- Advanced Data Services (1)
- Afd (1)
- After Logon Trigger (1)
- Ahf (1)
- Aix (1)
- Akka (1)
- Alloydb (1)
- Alter Table (1)
- Always On (1)
- Always On Listener (1)
- Alwayson With Gke (1)
- Amazon (1)
- Amazon Athena (1)
- Amazon Aurora Backtrack (1)
- Amazon Efs (1)
- Amazon Redshift (1)
- Amazon Sagemaker (1)
- Amazon Vpc Flow Logs (1)
- Amdu (1)
- Analysis (1)
- Analytical Models (1)
- Analyzing Bigquery Via Sheets (1)
- Anisble (1)
- Annual Mysql Community Dinner (1)
- Anthos (1)
- Apache (1)
- Apache Nifi (1)
- Apache Spark (1)
- Application Migration (1)
- Architect (1)
- Architecture (1)
- Ash (1)
- Asmlib (1)
- Atlas CLI (1)
- Audit In Postgres (1)
- Audit In Postgresql (1)
- Auto Failover (1)
- Auto Increment (1)
- Auto Index (1)
- Autoconfig (1)
- Automated Reports (1)
- Automl (1)
- Autostart (1)
- Awr Mining (1)
- Aws Glue (1)
- Aws Lake Formation (1)
- Aws Lambda (1)
- Azure Analysis Services (1)
- Azure Blob Storage (1)
- Azure Cognitive Search (1)
- Azure Data (1)
- Azure Data Lake (1)
- Azure Data Lake Analytics (1)
- Azure Data Lake Store (1)
- Azure Data Migration Service (1)
- Azure Dma (1)
- Azure Dms (1)
- Azure Document Intelligence (1)
- Azure Integration Runtime (1)
- Azure OpenAI (1)
- Azure Sql Data Warehouse (1)
- Azure Sql Dw (1)
- Azure Sql Managed Instance (1)
- Azure Vm (1)
- Backup For Sql Server (1)
- Bacpac (1)
- Bag (1)
- Bare Metal Solution (1)
- Batch Operation (1)
- Batches In Cassandra (1)
- Beats (1)
- Best Practice (1)
- Bi Publisher (1)
- Binary Logging (1)
- Bind Variables (1)
- Bitnami (1)
- Blob Storage Endpoint (1)
- Blockchain (1)
- Browsers (1)
- Btp Architecture (1)
- Btp Components (1)
- Buffer Pool (1)
- Bug (1)
- Bugs (1)
- Build 2019 Updates (1)
- Build Cassandra (1)
- Bundle Patch (1)
- Bushy Join (1)
- Business Continuity (1)
- Business Insights (1)
- Business Process Modelling (1)
- Business Reputation (1)
- CAPEX (1)
- Capacity Planning (1)
- Career (1)
- Career Development (1)
- Cassandra-Cli (1)
- Catcon.Pm (1)
- Catctl.Pl (1)
- Catupgrd.Sql (1)
- Cbo (1)
- Cdb Duplication (1)
- Certificate (1)
- Certificate Management (1)
- Chaos Engineering (1)
- Cheatsheet (1)
- Checkactivefilesandexecutables (1)
- Chmod (1)
- Chown (1)
- Chrome Enterprise (1)
- Chrome Security (1)
- Cl-Series (1)
- Cleanup (1)
- Cloud Browser (1)
- Cloud Build (1)
- Cloud Consulting (1)
- Cloud Data Warehouse (1)
- Cloud Database Management (1)
- Cloud Dataproc (1)
- Cloud Foundry (1)
- Cloud Manager (1)
- Cloud Migations (1)
- Cloud Networking (1)
- Cloud SQL Replica (1)
- Cloud Scheduler (1)
- Cloud Services (1)
- Cloud Strategies (1)
- Cloudformation (1)
- Cluster Resource (1)
- Cmo (1)
- Cockroach Db (1)
- Coding Benchmarks (1)
- Colab (1)
- Collectd (1)
- Columnar (1)
- Communication Plans (1)
- Community (1)
- Compact Storage (1)
- Compaction (1)
- Compliance (1)
- Compression (1)
- Compute Instances (1)
- Compute Node (1)
- Concurrent Manager (1)
- Concurrent Processing (1)
- Configuration (1)
- Consistency Level (1)
- Consolidation (1)
- Conversational AI (1)
- Covid-19 (1)
- Cpu Patching (1)
- Cqlsstablewriter (1)
- Crash (1)
- Create Catalog Error (1)
- Create_File_Dest (1)
- Credentials (1)
- Cross Platform (1)
- CrowdStrike (1)
- Crsctl (1)
- Custom Instance Images (1)
- Cve-2022-21500 (1)
- Cvu (1)
- Cypher Queries (1)
- DAX (1)
- DBSAT 3 (1)
- Dacpac (1)
- Dag (1)
- Data Analytics Platform (1)
- Data Box (1)
- Data Classification (1)
- Data Cleansing (1)
- Data Encryption (1)
- Data Estate (1)
- Data Flow Management (1)
- Data Insights (1)
- Data Integrity (1)
- Data Lake (1)
- Data Leader (1)
- Data Lifecycle Management (1)
- Data Lineage (1)
- Data Masking (1)
- Data Mesh (1)
- Data Migration Assistant (1)
- Data Migration Service (1)
- Data Mining (1)
- Data Monetization (1)
- Data Policy (1)
- Data Profiling (1)
- Data Protection (1)
- Data Retention (1)
- Data Safe (1)
- Data Sheets (1)
- Data Summit (1)
- Data Vault (1)
- Data Warehouse Modernization (1)
- Database Auditing (1)
- Database Consultant (1)
- Database Link (1)
- Database Modernization (1)
- Database Provisioning (1)
- Database Provisioning Failed (1)
- Database Replication (1)
- Database Scaling (1)
- Database Schemas (1)
- Database Security (1)
- Databricks (1)
- Datadog (1)
- Datafile (1)
- Datapatch (1)
- Dataprivacy (1)
- Datascape 59 (1)
- Datasets (1)
- Datastax Cassandra (1)
- Datastax Opscenter (1)
- Datasync Error (1)
- Db_Create_File_Dest (1)
- Dbaas (1)
- Dbatools (1)
- Dbcc Checkident (1)
- Dbms_Cloud (1)
- Dbms_File_Transfer (1)
- Dbms_Metadata (1)
- Dbms_Service (1)
- Dbms_Stats (1)
- Dbupgrade (1)
- Deep Learning (1)
- Delivery (1)
- Devd (1)
- Dgbroker (1)
- Dialogflow (1)
- Dict0Dict (1)
- Did You Know (1)
- Direct Path Read Temp (1)
- Disk Groups (1)
- Disk Management (1)
- Diskgroup (1)
- Dispatchers (1)
- Distributed Ag (1)
- Distribution Agent (1)
- Documentation (1)
- Download (1)
- Dp Agent (1)
- Duet AI (1)
- Duplication (1)
- Dynamic Sampling (1)
- Dynamic Tasks (1)
- E-Business Suite Cpu Patching (1)
- E-Business Suite Patching (1)
- Ebs Sso (1)
- Ec2 (1)
- Edb Postgresql Advanced Server (1)
- Edb Postgresql Password Verify Function (1)
- Editions (1)
- Edp (1)
- El Carro (1)
- Elassandra (1)
- Elk Stack (1)
- Em13Cr2 (1)
- Emcli (1)
- End of Life (1)
- Engineering (1)
- Enqueue (1)
- Enterprise (1)
- Enterprise Architecture (1)
- Enterprise Command Centers (1)
- Enterprise Manager Command Line Interface (Em Cli (1)
- Enterprise Plus (1)
- Episode 58 (1)
- Error Handling (1)
- Exacc (1)
- Exacheck (1)
- Exacs (1)
- Exadata Asr (1)
- Execution (1)
- Executive Sponsor (1)
- Expenditure (1)
- Export Sccm Collection To Csv (1)
- External Persistent Volumes (1)
- Fail (1)
- Failed Upgrade (1)
- Failover In Postgresql (1)
- Fall 2021 (1)
- Fast Recovery Area (1)
- Flash Recovery Area (1)
- Flashback (1)
- Fnd (1)
- Fndsm (1)
- Force_Matching_Signature (1)
- Fra Full (1)
- Framework (1)
- Freebsd (1)
- Fsync (1)
- Function-Based Index (1)
- GCVE Architecture (1)
- GPQA (1)
- Gaming (1)
- Garbagecollect (1)
- Gcp Compute (1)
- Gcp-Spanner (1)
- Geography (1)
- Geth (1)
- Getmospatch (1)
- Git (1)
- Global Analytics (1)
- Google Analytics (1)
- Google Cloud Architecture Framework (1)
- Google Cloud Data Services (1)
- Google Cloud Partner (1)
- Google Cloud Spanner (1)
- Google Cloud VMware Engine (1)
- Google Compute Engine (1)
- Google Dataflow (1)
- Google Datalab (1)
- Google Grab And Go (1)
- Google Sheets (1)
- Gp2 (1)
- Graph Algorithms (1)
- Graph Databases (1)
- Graph Inferences (1)
- Graph Theory (1)
- GraphQL (1)
- Graphical User Interface (Gui) (1)
- Grid (1)
- Grid Infrastructure (1)
- Griddisk Resize (1)
- Grp (1)
- Guaranteed Restore Point (1)
- Guid Mismatch (1)
- HR Technology (1)
- HRM (1)
- Ha (1)
- Hang (1)
- Hashicorp (1)
- Hbase (1)
- Hcc (1)
- Hdinsight (1)
- Healthcheck (1)
- Hemantgiri S. Goswami (1)
- Hortonworks (1)
- How To Install Ssrs (1)
- Hr (1)
- Httpchk (1)
- Https (1)
- Huge Pages (1)
- HumanEval (1)
- Hung Database (1)
- Hybrid Columnar Compression (1)
- Hyper-V (1)
- Hyperscale (1)
- Hypothesis Driven Development (1)
- Ibm (1)
- Identity Management (1)
- Idm (1)
- Ilom (1)
- Imageinfo (1)
- Impdp (1)
- In Place Upgrade (1)
- Incident Response (1)
- Indempotent (1)
- Indexing In Mongodb (1)
- Influxdb (1)
- Information (1)
- Infrastructure As A Code (1)
- Injection (1)
- Innobackupex (1)
- Innodb Concurrency (1)
- Innodb Flush Method (1)
- Insights (1)
- Installing (1)
- Instance Cloning (1)
- Integration Services (1)
- Integrations (1)
- Interactive_Timeout (1)
- Interval Partitioning (1)
- Invisible Indexes (1)
- Io1 (1)
- IoT (1)
- Iops (1)
- Iphone (1)
- Ipv6 (1)
- Iscsi (1)
- Iscsi-Initiator-Utils (1)
- Iscsiadm (1)
- Issues (1)
- It Industry (1)
- It Teams (1)
- JMX Metrics (1)
- Jared Still (1)
- Javascript (1)
- Jdbc (1)
- Jinja2 (1)
- Jmx (1)
- Jmx Monitoring (1)
- Jvm (1)
- Jython (1)
- K8S (1)
- Kernel (1)
- Key Btp Components (1)
- Kfed (1)
- Kill Sessions (1)
- Knapsack (1)
- Kubeflow (1)
- LMSYS Chatbot Arena (1)
- Large Pages (1)
- Latency (1)
- Latest News (1)
- Leadership (1)
- Leap Second (1)
- Limits (1)
- Line 1 (1)
- Linkcolumn (1)
- Linux Host Monitoring (1)
- Linux Storage Appliance (1)
- Listener (1)
- Loadavg (1)
- Lock_Sga (1)
- Locks (1)
- Log File Switch (Archiving Needed) (1)
- Logfile (1)
- Looker (1)
- Lvm (1)
- MMLU (1)
- Managed Instance (1)
- Managed Services (1)
- Management (1)
- Management Servers (1)
- Marketing (1)
- Marketing Analytics (1)
- Martech (1)
- Masking (1)
- Megha Bedi (1)
- Metadata (1)
- Method-R Workbench (1)
- Metric (1)
- Metric Extensions (1)
- Michelle Gutzait (1)
- Microservices (1)
- Microsoft Azure Sql Database (1)
- Microsoft Build (1)
- Microsoft Build 2019 (1)
- Microsoft Ignite (1)
- Microsoft Inspire 2019 (1)
- Migrate (1)
- Migrating Ssis Catalog (1)
- Migrating To Azure Sql (1)
- Migration Checklist (1)
- Mirroring (1)
- Mismatch (1)
- Model Governance (1)
- Monetization (1)
- MongoDB Atlas (1)
- MongoDB Compass (1)
- Ms Excel (1)
- Msdtc (1)
- Msdtc In Always On (1)
- Msdtc In Cluster (1)
- Multi-IP (1)
- Multicast (1)
- Multipath (1)
- My.Cnf (1)
- MySQL Shell Logical Backup (1)
- MySQLDump (1)
- Mysql Enterprise (1)
- Mysql Plugin For Oracle Enterprise Manager (1)
- Mysql Replication Filters (1)
- Mysql Server (1)
- Mysql-Python (1)
- Nagios (1)
- Ndb (1)
- Net_Read_Timeout (1)
- Net_Write_Timeout (1)
- Netcat (1)
- Newsroom (1)
- Nfs (1)
- Nifi (1)
- Node (1)
- November 10Th 2015 (1)
- November 6Th 2015 (1)
- Null Columns (1)
- Nullipotent (1)
- OPEX (1)
- ORAPKI (1)
- O_Direct (1)
- Oacore (1)
- October 21St 2015 (1)
- October 6Th 2015 (1)
- October 8Th 2015 (1)
- Oda (1)
- Odbcs (1)
- Odbs (1)
- Odi (1)
- Oel (1)
- Ohs (1)
- Olvm (1)
- On-Prem To Azure Sql (1)
- On-Premises (1)
- Onclick (1)
- Open.Canada.Ca (1)
- Openstack (1)
- Operating System Monitoring (1)
- Oplog (1)
- Opsworks (1)
- Optimization (1)
- Optimizer (1)
- Ora-01852 (1)
- Ora-7445 (1)
- Oracle 19 (1)
- Oracle 20C (1)
- Oracle Cursor (1)
- Oracle Database 12.2 (1)
- Oracle Database Appliance (1)
- Oracle Database Se2 (1)
- Oracle Database Standard Edition 2 (1)
- Oracle Database Upgrade (1)
- Oracle Database@Google Cloud (1)
- Oracle Exadata Smart Scan (1)
- Oracle Licensing (1)
- Oracle Linux Virtualization Manager (1)
- Oracle Oda (1)
- Oracle Openworld (1)
- Oracle Parallelism (1)
- Oracle Rdbms (1)
- Oracle Real Application Clusters (1)
- Oracle Reports (1)
- Oracle Security (1)
- Oracle Wallet (1)
- Orasrp (1)
- Organizational Change (1)
- Orion (1)
- Os (1)
- Osbws_Install.Jar (1)
- Oui Gui (1)
- Output (1)
- Owox (1)
- Paas (1)
- Package Deployment Wizard Error (1)
- Parallel Execution (1)
- Parallel Query (1)
- Parallel Query Downgrade (1)
- Partitioning (1)
- Partitions (1)
- Password (1)
- Password Change (1)
- Password Recovery (1)
- Password Verify Function In Postgresql (1)
- Patches (1)
- Patchmgr (1)
- Pdb Duplication (1)
- Penalty (1)
- Perfomrance (1)
- Performance Schema (1)
- Pg 15 (1)
- Pg_Rewind (1)
- Pga (1)
- Pipeline Debugging (1)
- Pivot (1)
- Planning (1)
- Plsql (1)
- Policy (1)
- Polybase (1)
- Post-Acquisition (1)
- Post-Covid It (1)
- Postgresql Complex Password (1)
- Postgresql With Repmgr Integration (1)
- Pq (1)
- Preliminar Connection (1)
- Preliminary Connection (1)
- Privatecloud (1)
- Process Mining (1)
- Production (1)
- Productivity (1)
- Profile In Edb Postgresql (1)
- Programming (1)
- Prompt Engineering (1)
- Provisioned Iops (1)
- Provisiones Iops (1)
- Proxy Monitoring (1)
- Psu (1)
- Public Cloud (1)
- Pubsub (1)
- Purge (1)
- Purge Thread (1)
- Pythian Blackbird Acquisition (1)
- Pythian Goodies (1)
- Pythian News (1)
- Python Pandas (1)
- Query Performance (1)
- Quicksight (1)
- Quota Limits (1)
- R12 R12.2 Cp Concurrent Processing Abort (1)
- R12.1.3 (1)
- REF! (1)
- Ram Cache (1)
- Rbac (1)
- Rdb (1)
- Rds_File_Util (1)
- Read Free Replication (1)
- Read Latency (1)
- Read Only (1)
- Read Replica (1)
- Reboot (1)
- Recruiting (1)
- Redo Size (1)
- Relational Database Management System (1)
- Release (1)
- Release Automation (1)
- Repair (1)
- Replication Compatibility (1)
- Replication Error (1)
- Repmgr (1)
- Repmgrd (1)
- Reporting Services 2019 (1)
- Resiliency Planning (1)
- Resource Manager (1)
- Resources (1)
- Restore (1)
- Restore Point (1)
- Retail (1)
- Rhel (1)
- Risk (1)
- Risk Management (1)
- Rocksrb (1)
- Role In Postgresql (1)
- Rollback (1)
- Rolling Patch (1)
- Row0Purge (1)
- Rpm (1)
- Rule "Existing Clustered Or Clustered-Prepared In (1)
- Running Discovery On Remote Machine (1)
- SAP (1)
- SQL Optimization (1)
- SQL Tracing (1)
- SSRS Administration (1)
- SaaS (1)
- Sap Assessment (1)
- Sap Assessment Report (1)
- Sap Backup Restore (1)
- Sap Btp Architecture (1)
- Sap Btp Benefits (1)
- Sap Btp Model (1)
- Sap Btp Services (1)
- Sap Homogenous System Copy Method (1)
- Sap Landscape Copy (1)
- Sap Migration Assessment (1)
- Sap On Mssql (1)
- Sap System Copy (1)
- Sar (1)
- Scaling Ir (1)
- Sccm (1)
- Sccm Powershell (1)
- Scheduler (1)
- Scheduler_Job (1)
- Schedulers (1)
- Scheduling (1)
- Scott Mccormick (1)
- Scripts (1)
- Sdp (1)
- Secrets (1)
- Securing Sql Server (1)
- Security Compliance (1)
- Sed (Stream Editor) (1)
- Self Hosted Ir (1)
- Semaphore (1)
- Seps (1)
- September 11Th 2015 (1)
- Serverless Computing (1)
- Serverless Framework (1)
- Service Broker (1)
- Service Bus (1)
- Shared Connections (1)
- Shared Storage (1)
- Shellshock (1)
- Signals (1)
- Silent (1)
- Slave (1)
- Slob (1)
- Smart Scan (1)
- Smtp (1)
- Snapshot (1)
- Snowday Fall 2021 (1)
- Socat (1)
- Software Development (1)
- Software Engineering (1)
- Solutions Architecture (1)
- Spanner-Backups (1)
- Sphinx (1)
- Split Brain In Postgresql (1)
- Spm (1)
- Sql Agent (1)
- Sql Backup To Url Error (1)
- Sql Cluster Installer Hang (1)
- Sql Database (1)
- Sql Developer (1)
- Sql On Linux (1)
- Sql Server 2014 (1)
- Sql Server 2016 (1)
- Sql Server Agent On Linux (1)
- Sql Server Backups (1)
- Sql Server Denali Is Required To Install Integrat (1)
- Sql Server Health Check (1)
- Sql Server Troubleshooting On Linux (1)
- Sql Server Version (1)
- Sql Setup (1)
- Sql Vm (1)
- Sql2K19Ongke (1)
- Sqldatabase Serverless (1)
- Ssh User Equivalence (1)
- Ssis Denali Error (1)
- Ssis Install Error E Xisting Clustered Or Cluster (1)
- Ssis Package Deployment Error (1)
- Ssisdb Master Key (1)
- Ssisdb Restore Error (1)
- Sso (1)
- Ssrs 2019 (1)
- Sstable2Json (1)
- Sstableloader (1)
- Sstablesimpleunsortedwriter (1)
- Stack Dump (1)
- Standard Edition (1)
- Startup Process (1)
- Statistics (1)
- Statspack (1)
- Statspack Data Mining (1)
- Statspack Erroneously Reporting (1)
- Statspack Issues (1)
- Storage (1)
- Stored Procedure (1)
- Strategies (1)
- Streaming (1)
- Sunos (1)
- Swap (1)
- Swapping (1)
- Switch (1)
- Syft (1)
- Synapse (1)
- Sync Failed There Is Not Enough Space On The Disk (1)
- Sys Schema (1)
- System Function (1)
- Systems Administration (1)
- T-Sql (1)
- Table Optimization (1)
- Tablespace Growth (1)
- Tablespaces (1)
- Tags (1)
- Tar (1)
- Tde (1)
- Team Management (1)
- Tech Debt (1)
- Technology (1)
- Telegraf (1)
- Tempdb Encryption (1)
- Templates (1)
- Temporary Tablespace (1)
- Tenserflow (1)
- Teradata (1)
- Testing New Cassandra Builds (1)
- There Is Not Enough Space On The Disk (1)
- Thick Data (1)
- Third-Party Data (1)
- Thrift (1)
- Thrift Data (1)
- Tidb (1)
- Time Series (1)
- Time-Drift (1)
- Tkprof (1)
- Tmux (1)
- Tns (1)
- Trace (1)
- Tracefile (1)
- Training (1)
- Transaction Log (1)
- Transactions (1)
- Transformation Navigator (1)
- Transparent Data Encryption (1)
- Trigger (1)
- Triggers On Memory-Optimized Tables Must Use With (1)
- Troubleshooting (1)
- Tungsten (1)
- Tvdxtat (1)
- Twitter (1)
- U-Sql (1)
- UNDO Tablespace (1)
- Upgrade Issues (1)
- Uptime (1)
- Uptrade (1)
- Url Backup Error (1)
- Usability (1)
- Use Cases (1)
- User (1)
- User Defined Compactions (1)
- Utilization (1)
- Utl_Smtp (1)
- VDI Jump Host (1)
- Validate Structure (1)
- Validate_Credentials (1)
- Value (1)
- Velocity (1)
- Vertex AI (1)
- Vertica (1)
- Vertical Slicing (1)
- Videos (1)
- Virtual Private Cloud (1)
- Virtualization (1)
- Vision (1)
- Vpn (1)
- Wait_Timeout (1)
- Wallet (1)
- Webhook (1)
- Weblogic Connection Filters (1)
- Webscale Database (1)
- Windows 10 (1)
- Windows Powershell (1)
- WiredTiger (1)
- With Native_Compilation (1)
- Word (1)
- Workshop (1)
- Workspace Security (1)
- Xbstream (1)
- Xml Publisher (1)
- Zabbix (1)
- dbms_Monitor (1)
- postgresql 16 (1)
- sqltrace (1)
- tracing (1)
- vSphere (1)
- xml (1)
- December 2024 (1)
- October 2024 (2)
- September 2024 (7)
- August 2024 (4)
- July 2024 (2)
- June 2024 (6)
- May 2024 (3)
- April 2024 (2)
- February 2024 (1)
- January 2024 (11)
- December 2023 (10)
- November 2023 (11)
- October 2023 (10)
- September 2023 (8)
- August 2023 (6)
- July 2023 (2)
- June 2023 (13)
- May 2023 (4)
- April 2023 (6)
- March 2023 (10)
- February 2023 (6)
- January 2023 (5)
- December 2022 (10)
- November 2022 (10)
- October 2022 (10)
- September 2022 (13)
- August 2022 (16)
- July 2022 (12)
- June 2022 (13)
- May 2022 (11)
- April 2022 (4)
- March 2022 (5)
- February 2022 (4)
- January 2022 (14)
- December 2021 (16)
- November 2021 (11)
- October 2021 (6)
- September 2021 (11)
- August 2021 (6)
- July 2021 (9)
- June 2021 (4)
- May 2021 (8)
- April 2021 (16)
- March 2021 (16)
- February 2021 (6)
- January 2021 (12)
- December 2020 (12)
- November 2020 (17)
- October 2020 (11)
- September 2020 (10)
- August 2020 (11)
- July 2020 (13)
- June 2020 (6)
- May 2020 (9)
- April 2020 (18)
- March 2020 (21)
- February 2020 (13)
- January 2020 (15)
- December 2019 (10)
- November 2019 (11)
- October 2019 (12)
- September 2019 (16)
- August 2019 (15)
- July 2019 (10)
- June 2019 (16)
- May 2019 (20)
- April 2019 (21)
- March 2019 (14)
- February 2019 (18)
- January 2019 (18)
- December 2018 (5)
- November 2018 (16)
- October 2018 (12)
- September 2018 (20)
- August 2018 (27)
- July 2018 (31)
- June 2018 (34)
- May 2018 (28)
- April 2018 (27)
- March 2018 (17)
- February 2018 (8)
- January 2018 (20)
- December 2017 (14)
- November 2017 (4)
- October 2017 (1)
- September 2017 (3)
- August 2017 (5)
- July 2017 (4)
- June 2017 (2)
- May 2017 (7)
- April 2017 (7)
- March 2017 (8)
- February 2017 (8)
- January 2017 (5)
- December 2016 (3)
- November 2016 (4)
- October 2016 (8)
- September 2016 (9)
- August 2016 (10)
- July 2016 (9)
- June 2016 (8)
- May 2016 (13)
- April 2016 (16)
- March 2016 (13)
- February 2016 (11)
- January 2016 (6)
- December 2015 (11)
- November 2015 (11)
- October 2015 (5)
- September 2015 (16)
- August 2015 (4)
- July 2015 (1)
- June 2015 (3)
- May 2015 (6)
- April 2015 (5)
- March 2015 (5)
- February 2015 (4)
- January 2015 (3)
- December 2014 (7)
- October 2014 (4)
- September 2014 (6)
- August 2014 (6)
- July 2014 (16)
- June 2014 (7)
- May 2014 (6)
- April 2014 (5)
- March 2014 (4)
- February 2014 (10)
- January 2014 (6)
- December 2013 (8)
- November 2013 (12)
- October 2013 (9)
- September 2013 (6)
- August 2013 (7)
- July 2013 (9)
- June 2013 (7)
- May 2013 (7)
- April 2013 (4)
- March 2013 (7)
- February 2013 (4)
- January 2013 (4)
- December 2012 (6)
- November 2012 (8)
- October 2012 (9)
- September 2012 (3)
- August 2012 (5)
- July 2012 (5)
- June 2012 (7)
- May 2012 (11)
- April 2012 (1)
- March 2012 (8)
- February 2012 (1)
- January 2012 (6)
- December 2011 (8)
- November 2011 (5)
- October 2011 (9)
- September 2011 (6)
- August 2011 (4)
- July 2011 (1)
- June 2011 (1)
- May 2011 (5)
- April 2011 (2)
- February 2011 (2)
- January 2011 (2)
- December 2010 (1)
- November 2010 (7)
- October 2010 (3)
- September 2010 (8)
- August 2010 (2)
- July 2010 (4)
- June 2010 (7)
- May 2010 (2)
- April 2010 (1)
- March 2010 (3)
- February 2010 (3)
- January 2010 (2)
- November 2009 (6)
- October 2009 (6)
- August 2009 (3)
- July 2009 (3)
- June 2009 (3)
- May 2009 (2)
- April 2009 (8)
- March 2009 (6)
- February 2009 (4)
- January 2009 (3)
- November 2008 (3)
- October 2008 (7)
- September 2008 (6)
- August 2008 (9)
- July 2008 (9)
- June 2008 (9)
- May 2008 (9)
- April 2008 (8)
- March 2008 (4)
- February 2008 (3)
- January 2008 (3)
- December 2007 (2)
- November 2007 (7)
- October 2007 (1)
- August 2007 (4)
- July 2007 (3)
- June 2007 (8)
- May 2007 (4)
- April 2007 (2)
- March 2007 (2)
- February 2007 (5)
- January 2007 (8)
- December 2006 (1)
- November 2006 (3)
- October 2006 (4)
- September 2006 (3)
- July 2006 (1)
- May 2006 (2)
- April 2006 (1)
- July 2005 (1)
No Comments Yet
Let us know what you think