Share this
More fun with oracle timestamp math
by Jared Still on Apr 4, 2016 12:00:00 AM
Timestamp Math
Several years ago I wrote an article on Oracle date math. Amazingly, that article was still available online at the time of this writing. Working With Oracle Dates An update to that article is long overdue. While date math with the DATE data type is fairly well known and straight forward, date math with Oracle TIMESTAMP data is less well known and somewhat more difficult.Data Types and Functions
Let's begin by enumerating the data types and functions that will be discussedDatetime and Interval Data Types
Documentation for Datetime and Interval Data Types- Timestamp
- Timestamp with Time Zone
- Interval Day to Second
- Interval Year to Month
Datetime Literals
Documentation for Datetime Literals- Date
- Timestamp
- Timestamp with Time Zone
- Timestamp with Local Time Zone
Interval Literals
Documentation for Interval Literals- Interval Day to Second
- Interval Year to Month
Datetime/Interval Arithmetic
Documentation for Datetime/Interval Arithmetic There is not a link to the heading, just scroll down the page until you find this.Timestamp Functions
Documentation for Datetime Functions There quite a few of these available. Most readers will already be familiar with many of these, and so only some of the more interesting functions related to timestamps will be covered.- extract
- to_dsinterval
- to_yminterval
Timestamp Internals
It is always interesting to have some idea of how different bits of technology work. In Working With Oracle Dates I showed how Date values are stored in the database, as well as how a Date stored in the database is somewhat different than a date variable. Let's start by storing some data in a timestamp column and comparing how it differs from systimestamp. Test table for Timestamp Math Blog:
[sourcecode language="sql"] col c1_dump format a70 col c1 format a35 col funcname format a15 set linesize 200 trimspool on set pagesize 60 drop table timestamp_test purge; create table timestamp_test ( c1 timestamp ) / insert into timestamp_test values(systimestamp ); insert into timestamp_test values(systimestamp - 366); commit; select 'timestamp' funcname, c1, dump(c1) c1_dump from timestamp_test union all select 'systimestamp' funcname, systimestamp, dump(systimestamp) systimestamp_dump from dual / FUNCNAME C1 C1_DUMP --------------- ----------------------------------- ---------------------------------------------------------------------- timestamp 26-MAR-16 03.09.27.649491 PM -07:00 Typ=180 Len=11: 120,116,3,26,16,10,28,38,182,114,56 timestamp 26-MAR-15 03.09.27.000000 PM -07:00 Typ=180 Len=7: 120,115,3,26,16,10,28 systimestamp 26-MAR-16 03.09.27.687416 PM -04:00 Typ=188 Len=20: 224,7,3,26,19,9,27,0,192,34,249,40,252,0,5,0,0,0,0,0 3 rows selected. [/sourcecode]
One of the first things you might notice is that the value for Typ is 180 for TIMESTAMP columns, but for SYSTIMESTAMP Typ=188. The difference is due to TIMESTAMP being an internal data type as stored in the database, while SYSTIMESTAMP is dependent on the compiler used to create the executables. Another difference is the length; the first TIMESTAMP column has a length of 11, whereas the SYSTIMESTAMP column's length is 20. And what about that second TIMESTAMP column? Why is the length only 7?
TIMESTAMP with length of 7
An example will show why the second row inserted into TIMESTAMP_TEST has a length of only 7.
[sourcecode language="sql"] 1* select dump(systimestamp) t1, dump(systimestamp-1) t2, dump(sysdate) t3 from dual 15:34:32 ora12c102rac01.jks.com - jkstill@js122a1 SQL- / T1 T2 T3 ---------------------------------------- ---------------------------------------- ---------------------------------------- Typ=188 Len=20: 224,7,3,22,22,34,35,0,16 Typ=13 Len=8: 224,7,3,21,18,34,35,0 Typ=13 Len=8: 224,7,3,22,18,34,35,0 0,181,162,17,252,0,5,0,0,0,0,0 1 row selected. [/sourcecode]
T2 was implicitly converted to the same data type as SYSDATE because standard date math was performed on it. The same thing happened when the second row was inserted TIMESTAMP_TEST. Oracle implicitly converted the data to a DATE data type, and then implicitly converted it again back to a timestamp, only the standard date information is available following the previous implicit conversion. You may have noticed that in this example the length of the data is 8, while that stored in the table was 7. This is due to the use of SYSDATE, which is an external data type, whereas any data of DATE data type that is stored in the database is using an internal data type which always has a length of 7.
SYSTIMESTAMP Byte Values
Let's see if we can determine how each byte is used in a SYSTIMESTAMP value The following SQL will use the current time as a baseline, and start a point 10 seconds previous, showing the timestamp value and the internal representation.
[sourcecode language="sql"] col t1 format a35 col t2 format a38 col dump_t1 format a70 col dump_t2 format a70 set linesize 250 trimspool on /* using to_disinterval() allows performing timestamp math without implicit conversions see https://en.wikipedia.org/wiki/ISO_8601 for an explanation of the PTnS notation being used in to_dsinterval() */ alter session set nls_date_format = 'yyyy-mm-dd hh24:mi:ss'; -- subtract 1 second from the current date -- do it 10 times select --systimestamp t1, --dump(systimestamp) dump_t1, systimestamp - to_dsinterval('PT' || to_char(level) || 'S') t2, dump(systimestamp - to_dsinterval('PT' || to_char(level) || 'S')) dump_t2 from dual connect by level <= 10 order by level desc / T2 DUMP_T2 -------------------------------------- ---------------------------------------------------------------------- 26-MAR-16 03.34.55.349007000 PM -04:00 Typ=188 Len=20: 224,7,3,26,19,34,55,0,152,108,205,20,252,0,5,0,0,0,0,0 26-MAR-16 03.34.56.349007000 PM -04:00 Typ=188 Len=20: 224,7,3,26,19,34,56,0,152,108,205,20,252,0,5,0,0,0,0,0 26-MAR-16 03.34.57.349007000 PM -04:00 Typ=188 Len=20: 224,7,3,26,19,34,57,0,152,108,205,20,252,0,5,0,0,0,0,0 26-MAR-16 03.34.58.349007000 PM -04:00 Typ=188 Len=20: 224,7,3,26,19,34,58,0,152,108,205,20,252,0,5,0,0,0,0,0 26-MAR-16 03.34.59.349007000 PM -04:00 Typ=188 Len=20: 224,7,3,26,19,34,59,0,152,108,205,20,252,0,5,0,0,0,0,0 26-MAR-16 03.35.00.349007000 PM -04:00 Typ=188 Len=20: 224,7,3,26,19,35,0,0,152,108,205,20,252,0,5,0,0,0,0,0 26-MAR-16 03.35.01.349007000 PM -04:00 Typ=188 Len=20: 224,7,3,26,19,35,1,0,152,108,205,20,252,0,5,0,0,0,0,0 26-MAR-16 03.35.02.349007000 PM -04:00 Typ=188 Len=20: 224,7,3,26,19,35,2,0,152,108,205,20,252,0,5,0,0,0,0,0 26-MAR-16 03.35.03.349007000 PM -04:00 Typ=188 Len=20: 224,7,3,26,19,35,3,0,152,108,205,20,252,0,5,0,0,0,0,0 26-MAR-16 03.35.04.349007000 PM -04:00 Typ=188 Len=20: 224,7,3,26,19,35,4,0,152,108,205,20,252,0,5,0,0,0,0,0 10 rows selected. [/sourcecode]
From the output we can see that seconds are numbered 0-59, and that the 7th byte in the internal format is where the second is stored. We can also see that the Month is represented by the 3rd bytes, and the Day by the fourth 4th byte. One would then logically expect the 5th bite to show us the hour. Glancing at the actual time of 3:00 PM it seems curious then the value we expect to be the hour is 19 rather than 15. The server where these queries is being run has a Time Zone of EDT. Next I ran the same queries on a server with a TZ of PDT, and though the time in the timestamp appeared as 3 hours earlier, the value stored in the 5th byte is still 19. Oracle is storing the hour in
UTC time, then using the TZ from the server to get the actual time.
Playing with Time Zones
We can modify the local session time zone to find out how Oracle is calculating the times. The first attempt is made on the remote client where scripts for this article are developed. The TZ will be set for Ethiopia and then the time checked at the Linux command line and in Oracle.
[sourcecode language="sql"] # date Sat Mar 26 13:16:12 PDT 2016 # TZ='Africa/Addis_Ababa'; export TZ # date Sat Mar 26 23:16:17 EAT 2016 # sqlplus jkstill/XXX@p1 Connected to: Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production SQL- !date Sat Mar 26 23:16:40 EAT 2016 SQL- l 1 select 2 systimestamp t1, 3 dump(systimestamp) dump_t1 4* from dual 23:16:50 ora12c102rac01.jks.com - jkstill@js122a1 SQL- / T1 DUMP_T1 ----------------------------------- ---------------------------------------------------------------------- 26-MAR-16 04.16.56.254769 PM -04:00 Typ=188 Len=20: 224,7,3,26,20,16,56,0,104,119,47,15,252,0,5,0,0,0,0,0 [/sourcecode]
Setting the TZ on the client clearly has no effect on the time returned from Oracle. Now let's try while logged on to the database server.
[sourcecode language="sql"] $ date Sat Mar 26 16:20:23 EDT 2016 $ TZ='Africa/Addis_Ababa'; export TZ $ date Sat Mar 26 23:20:38 EAT 2016 $ sqlplus / as sysdba Connected to: Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production SQL- l 1 select 2 systimestamp t1, 3 dump(systimestamp) dump_t1 4* from dual SQL- / T1 DUMP_T1 ----------------------------------- ---------------------------------------------------------------------- 26-MAR-16 11.22.48.473298 PM +03:00 Typ=188 Len=20: 224,7,3,26,20,22,48,0,80,244,53,28,3,0,5,0,0,0,0,0 [/sourcecode]
This experiment has demonstrated two things for us:
- Oracle is storing the hour as UTC time
- Setting the TZ on the client does not have any affect on the calculations of the time.
What About the Year?
Given the location of the month, it would be expected to find the year in the byte just previous the month byte. There is not just one byte before the month, but two. You will recall that SYSTIMESTAMP has a different internal representation than does the TIMESTAMP data type. Oracle is using both of these bytes to store the year. Working with this timestamp from an earlier example, we can use the information in Oracle Support Note 69028.1 to see how this works.
[sourcecode language="sql"] T2 DUMP_T2 -------------------------------------- ---------------------------------------------------------------------- 26-MAR-16 03.34.55.349007000 PM -04:00 Typ=188 Len=20: 224,7,3,26,19,34,55,0,152,108,205,20,252,0,5,0,0,0,0,0 [/sourcecode]
For the timestamp of March 16 2016 the first two bytes of the timestamp are used to represent the year. The Formula for AD dates is Byte 1 + ( Byte 2 * 256 ). Using this formula the year 2016 can be arrived at: 224 + ( 7 * 256) = 2016 For the TIMESTAMP data type, the format is somewhat different for the year; actually it works the same way it does for the DATE data type, in excess 100 notation.
[sourcecode language="sql"] SQL- l 1* select c1, dump(c1) dump_c1 from timestamp_test where rownum < 2 SQL- / C1 DUMP_C1 ------------------------------ --------------------------------------------------- 26-MAR-16 03.09.27.649491 PM Typ=180 Len=11: 120,116,3,26,16,10,28,38,182,114,56 [/sourcecode]
The 2nd byte indicates the current year - 1900.
Decode All Timestamp Components
Now let's decode all of the data in a TIMESTAMP. First we need some some TIMESTAMP test dataCreating the test data
The following SQL will provide some test data for following experiments. We may not use all of the columns or rows, but they are available.
[sourcecode language="sql"] drop table timestamp_tz_test purge; create table timestamp_tz_test ( id integer, c1 timestamp, c2 timestamp with time zone, c3 timestamp with local time zone ) / -- create 10 rows each on second apart begin for i in 1..10 loop insert into timestamp_tz_test values(i,systimestamp,systimestamp,systimestamp ); dbms_lock.sleep(1); null; end loop; commit; end; / [/sourcecode]
We already know that TIMESTAMP data can store fractional seconds to a billionth of a second. Should you want to prove that to yourself, the following bit of SQL can be used to insert TIMESTAMP data into a table, with each row being 1E-9 seconds later than the previous row. This will be left as an exercise for the reader.
[sourcecode language="sql"] create table t2 as select level id, to_timestamp('2016-03-29 14:25:42.5' || lpad(to_char(level),8,'0'),'yyyy-mm-dd hh24.mi.ssxff') c1 from dual connect by level <= 1000 / col dump_t1 format a70 col c1 format a35 col id format 99999999 select id, c1, substr(dump(c1),instr(dump(c1),',',-1,4)+1) dump_t1 from t2 order by id / [/sourcecode]
Oracle uses 4 bytes at the end of a timestamp to store the fractional seconds. The value of the least byte is as shown. Each greater byte will be a power of 256. The following SQL will make this more clear. Don't spend too much time at first trying to understand the SQL, at it will become more clear after you see the results. SQL to decode 1 row of TIMESTAMP data.
[sourcecode language="sql"] col id format 99 col t1 format a35 col dumpdata format a50 col tz_type format a10 col ts_component format a40 col label format a6 col real_value format a50 set linesize 200 trimspool on alter session set nls_timestamp_format = 'yyyy-mm-dd hh24.mi.ssxff'; alter session set nls_timestamp_tz_format = 'yyyy-mm-dd hh24.mi.ssxff tzr'; with rawdata as ( select c2 t1, dump(c2) dump_t1 from timestamp_tz_test where id = 1 ), datedump as ( select t1, substr(dump_t1,instr(dump_t1,' ',1,2)+1) dumpdata from rawdata ), -- regex from https://nuijten.blogspot.com/2009/07/splitting-comma-delimited-string-regexp.html datebits as ( select level id, regexp_substr (dumpdata, '[^,]+', 1, rownum) ts_component from datedump connect by level <= length (regexp_replace (dumpdata, '[^,]+')) + 1 ), labeldata as ( select 'TS,DU,CC,YY,MM,DD,HH,MI,SS,P1,P2,P3,P4' rawlabel from dual ), labels as ( select level-2 id, regexp_substr (rawlabel, '[^,]+', 1, rownum) label from labeldata connect by level <= length (regexp_replace (rawlabel, '[^,]+')) + 1 ), data as ( select db.id, db.ts_component from datebits db union select 0, dumpdata from datedump dd union select -1, to_char(t1) from rawdata ) select d.id, l.label, d.ts_component, case l.label when 'DU' then d.ts_component when 'CC' then 'Excess 100 - Real Value: ' || to_char(to_number((d.ts_component - 100)*100 )) when 'YY' then 'Excess 100 - Real Value: ' || to_char(to_number(d.ts_component - 100 )) when 'MM' then 'Real Value: ' || d.ts_component when 'DD' then 'Real Value: ' || d.ts_component when 'HH' then 'Excess 1 - Real Value: ' || to_char(to_number(d.ts_component)-1) when 'MI' then 'Excess 1 - Real Value: ' || to_char(to_number(d.ts_component)-1) when 'SS' then 'Excess 1 - Real Value: ' || to_char(to_number(d.ts_component)-1) when 'P1' then 'Fractional Second P1 : ' || to_char((to_number(d.ts_component) * POWER(256,3) ) / power(10,9)) when 'P2' then 'Fractional Second P2 : ' || to_char((to_number(d.ts_component) * POWER(256,2) ) / power(10,9)) when 'P3' then 'Fractional Second P3 : ' || to_char((to_number(d.ts_component) * 256 ) / power(10,9)) when 'P4' then 'Fractional Second P4 : ' || to_char((to_number(d.ts_component) + 256 ) / power(10,9)) end real_value from data d join labels l on l.id = d.id order by 1 / [/sourcecode]
When the values for the Pn fractional second columns are added up, they will be equal to the (rounded) value shown in the timestamp.
[sourcecode language="sql" padlinenumbers="false"] ID LABEL TS_COMPONENT REAL_VALUE --- ------ ---------------------------------------- -------------------------------------------------- -1 TS 2016-03-31 09.14.29.488265 -07:00 0 DU 120,116,3,31,17,15,30,29,26,85,40,13,60 120,116,3,31,17,15,30,29,26,85,40,13,60 1 CC 120 Excess 100 - Real Value: 2000 2 YY 116 Excess 100 - Real Value: 16 3 MM 3 Real Value: 3 4 DD 31 Real Value: 31 5 HH 17 Excess 1 - Real Value: 16 6 MI 15 Excess 1 - Real Value: 14 7 SS 30 Excess 1 - Real Value: 29 8 P1 29 Fractional Second P1 : .486539264 9 P2 26 Fractional Second P2 : .001703936 10 P3 85 Fractional Second P3 : .00002176 11 P4 40 Fractional Second P4 : .000000296 13 rows selected. [/sourcecode]
Timezones are recorded in an additional two bytes in TIMESTAMP WITH TIMEZONE and TIMEAZONE WITH LOCAL TIMEZONE data types. Decoding those two bytes is left as an exercise for the reader.
Timestamp Arithmetic
Now that we have had some fun exploring and understanding how Oracle stores TIMESTAMP data, it is time to see how calculations can be performed on timestamps. Note: See this ISO 8601 Article to understand the notation being used in to_dsinterval().Interval Day to Second
It is a common occurrence to add or subtract time to or from Oracle Dates. How that is done with the Oracle DATE data type is fairly well known.- Add 1 Day
- DATE + 1
- Add 1 Hour
- DATE + (1/24)
- Add 1 Minute
- DATE + ( 1 / 1440)
- Add 1 Second
- DATE + (1/86400)
[sourcecode language="sql" padlinenumbers="true"] alter session set nls_date_format = 'yyyy-mm-dd hh24:mi:ss'; select sysdate today, sysdate -1 yesterday from dual; select sysdate now, sysdate - (30/86400) "30_Seconds_Ago" from dual; select sysdate now, sysdate + ( 1/24 ) + ( 15/1440 ) + ( 42/86400) "1:15:42_Later" from dual; SQL- @date-calc Session altered. TODAY YESTERDAY ------------------- ------------------- 2016-03-30 13:39:06 2016-03-29 13:39:06 NOW 30_Seconds_Ago ------------------- ------------------- 2016-03-30 13:39:06 2016-03-30 13:38:36 NOW 1:15:42_Later ------------------- ------------------- 2016-03-30 13:39:06 2016-03-30 14:54:48 [/sourcecode]
While this same method will work with timestamps, the results may not be what you expect. As noted earlier Oracle will perform an implicit conversion to a DATE data type, resulting in truncation of some timestamp data. The next example makes it clear that implicit conversions have converted TIMESTAMP to a DATA type.
[sourcecode language="sql"] alter session set nls_timestamp_format = 'yyyy-mm-dd hh24.mi.ssxff'; alter session set nls_date_format = 'DD-MON-YY'; select systimestamp today, systimestamp -1 yesterday from dual; select systimestamp now, systimestamp - (30/86400) "30_Seconds_Ago" from dual; select systimestamp now, systimestamp + ( 1/24 ) + ( 15/1440 ) + ( 42/86400) "1:15:42_Later" from dual; SQL- @timestamp-calc-incorrect TODAY YESTERDAY --------------------------------------------------------------------------- --------- 2016-03-31 11.35.29.591223 -04:00 30-MAR-16 NOW 30_Second --------------------------------------------------------------------------- --------- 2016-03-31 11.35.29.592304 -04:00 31-MAR-16 NOW 1:15:42_L --------------------------------------------------------------------------- --------- 2016-03-31 11.35.29.592996 -04:00 31-MAR-16 [/sourcecode]
Oracle has supplied functions to properly perform calculations on timestamps. The previous example will work properly when ds_tointerval is used as seen in the next example.
[sourcecode language="sql"] col c30 head '30_Seconds_Ago' format a38 col clater head '1:15:42_Later' format a38 col now format a35 col today format a35 col yesterday format a38 alter session set nls_timestamp_format = 'yyyy-mm-dd hh24.mi.ssxff'; alter session set nls_timestamp_tz_format = 'yyyy-mm-dd hh24.mi.ssxff tzr'; -- alternate methods to subtract 1 day select systimestamp today, systimestamp - to_dsinterval('P1D') yesterday from dual; select systimestamp today, systimestamp - to_dsinterval('1 00:00:00') yesterday from dual; -- alternate methods to subtract 30 seconds select systimestamp now, systimestamp - to_dsinterval('PT30S') c30 from dual; select systimestamp now, systimestamp - to_dsinterval('0 00:00:30') c30 from dual; -- alternate methods to add 1 hour, 15 minutes and 42 seconds select systimestamp now, systimestamp + to_dsinterval('PT1H15M42S') clater from dual; select systimestamp now, systimestamp + to_dsinterval('0 01:15:42') clater from dual; TODAY YESTERDAY ----------------------------------- -------------------------------------- 2016-03-30 18.10.41.613813 -04:00 2016-03-29 18.10.41.613813000 -04:00 TODAY YESTERDAY ----------------------------------- -------------------------------------- 2016-03-30 18.10.41.614480 -04:00 2016-03-29 18.10.41.614480000 -04:00 NOW 30_Seconds_Ago ----------------------------------- -------------------------------------- 2016-03-30 18.10.41.615267 -04:00 2016-03-30 18.10.11.615267000 -04:00 NOW 30_Seconds_Ago ----------------------------------- -------------------------------------- 2016-03-30 18.10.41.615820 -04:00 2016-03-30 18.10.11.615820000 -04:00 NOW 1:15:42_Later ----------------------------------- -------------------------------------- 2016-03-30 18.10.41.616538 -04:00 2016-03-30 19.26.23.616538000 -04:00 NOW 1:15:42_Later ----------------------------------- -------------------------------------- 2016-03-30 18.10.41.617161 -04:00 2016-03-30 19.26.23.617161000 -04:00 [/sourcecode]
Extract Values from Timestamps
The values for years, months, days, hours and seconds can all be extracted from a timestamp via the extract function. The following code demonstrates a few uses of this, along with examples of retrieving intervals from two dates. The values in parentheses for the day() and year() intervals specify the numeric precision to be returned.
[sourcecode language="sql"] def nls_tf='yyyy-mm-dd hh24.mi.ssxff' alter session set nls_timestamp_format = '&nls_tf'; col d1_day format 999999 col full_interval format a30 col year_month_interval format a10 with dates as ( select to_timestamp_tz('2014-06-19 14:24:29.373872', '&nls_tf') d1 , to_timestamp_tz('2016-03-31 09:42:16.8734921', '&nls_tf') d2 from dual ) select extract(day from d1) d1_day , ( d2 - d1) day(4) to second full_interval , ( d2 - d1) year(3) to month year_month_interval , extract( day from d2 - d1) days_diff , extract( hour from d2 - d1) hours_diff , extract( minute from d2 - d1) minutes_diff , extract( second from d2 - d1) seconds_diff from dates / D1_DAY FULL_INTERVAL YEAR_MONTH DAYS_DIFF HOURS_DIFF MINUTES_DIFF SECONDS_DIFF ------- ------------------------------ ---------- ---------- ---------- ------------ ------------ 19 +0650 19:17:47.499620 +001-09 650 19 17 47.4996201 [/sourcecode]
Building on that, the following example demonstrates how the interval value the represents the difference between dates d1 and d2 can be added back to d1 and yield a date with the same value as d1.
[sourcecode language="sql"] def nls_tf='yyyy-mm-dd hh24.mi.ssxff' alter session set nls_timestamp_format = '&nls_tf'; col d1 format a30 col d2 format a30 col full_interval format a30 col calc_date format a30 with dates as ( select to_timestamp('2014-06-19 14:24:29.373872', '&nls_tf') d1 , to_timestamp('2016-03-31 09:42:16.873492', '&nls_tf') d2 from dual ) select d1,d2 , ( d2 - d1) day(4) to second full_interval , d1 + ( d2 - d1) day(4) to second calc_date from dates / D1 D2 FULL_INTERVAL CALC_DATE ------------------------------ ------------------------------ ------------------------------ ------------------------------ 2014-06-19 14.24.29.373872000 2016-03-31 09.42.16.873492000 +0650 19:17:47.499620 2016-03-31 09.42.16.873492000 [/sourcecode]
PL/SQL Interval Data Types
The ISO 8601 Article previously mentioned will be useful for understanding how time durations may be specified with interval functions. The following combination of SQL and PL/SQL is used to convert the difference between two timestamps into seconds. The code is incomplete in the sense that the assumption is made that the largest component of the INTERVAL is hours. In the use case for this code that is true, however there could also be days, months and years for larger value of the INTERVAL. The following code is sampled from the script ash-waits-use.sql and uses PL/SQL to demonstrate the use of the INTERVAL DAY TO SECOND data type in PL/SQL.
[sourcecode language="sql"] var v_wall_seconds number col wall_seconds new_value wall_seconds noprint declare ash_interval interval day to second; begin select max(sample_time) - min(sample_time) into ash_interval from v$active_session_history; select max(sample_time) - min(sample_time) into ash_interval from v$active_session_history where sample_time between decode('&&snap_begin_time', 'BEGIN', to_timestamp('1900-01-01 00:01','yyyy-mm-dd hh24:mi'), to_timestamp('&&snap_begin_time','yyyy-mm-dd hh24:mi') ) AND decode('&&snap_end_time', 'END', to_timestamp('4000-12-31 23:59','yyyy-mm-dd hh24:mi'), to_timestamp('&&snap_end_time','yyyy-mm-dd hh24:mi') ); :v_wall_seconds := (extract(hour from ash_interval) * 3600 ) + (extract(second from ash_interval) * 60 ) + extract(second from ash_interval) ; end; / select round(:v_wall_seconds,0) wall_seconds from dual; [/sourcecode]
Similarly the
to_yminterval function is used to to perform timestamp calculations with years and months.
[sourcecode language="sql" padlinenumbers="true"] col clater head 'LATER' format a38 col now format a35 col today format a35 col lastyear format a38 col nextyear format a38 alter session set nls_timestamp_format = 'yyyy-mm-dd hh24.mi.ssxff'; alter session set nls_timestamp_tz_format = 'yyyy-mm-dd hh24.mi.ssxff tzr'; -- alternate methods to add 1 year select systimestamp today, systimestamp + to_yminterval('P1Y') nextyear from dual; select systimestamp today, systimestamp + to_yminterval('01-00') nextyear from dual; -- alternate methods to subtract 2 months select systimestamp now, systimestamp - to_yminterval('P2M') lastyear from dual; select systimestamp now, systimestamp - to_yminterval('00-02') lastyear from dual; -- alternate methods to add 2 year, 4 months, 6 days ,1 hour, 15 minutes and 42 seconds select systimestamp now, systimestamp + to_yminterval('P2Y4M') + to_dsinterval('P2DT1H15M42S') clater from dual; select systimestamp now, systimestamp + to_yminterval('02-04') + to_dsinterval('2 01:15:42') clater from dual; TODAY YESTERDAY ----------------------------------- -------------------------------------- 2016-03-31 09.06.22.060051 -07:00 2016-03-30 09.06.22.060051000 -07:00 TODAY YESTERDAY ----------------------------------- -------------------------------------- 2016-03-31 09.06.22.061786 -07:00 2016-03-30 09.06.22.061786000 -07:00 NOW 30_Seconds_Ago ----------------------------------- ----------------
Share this
- Technical Track (967)
- Oracle (400)
- MySQL (137)
- Cloud (128)
- Open Source (90)
- Google Cloud (81)
- DBA Lounge (76)
- Microsoft SQL Server (76)
- Technical Blog (74)
- Big Data (52)
- AWS (49)
- Google Cloud Platform (46)
- Cassandra (44)
- DevOps (41)
- Azure (38)
- Pythian (33)
- Linux (30)
- Database (26)
- Podcasts (25)
- Site Reliability Engineering (25)
- Performance (24)
- SQL Server (24)
- Microsoft Azure (23)
- Oracle E-Business Suite (23)
- PostgreSQL (23)
- Oracle Database (22)
- Docker (21)
- Group Blog Posts (20)
- Security (20)
- DBA (19)
- Log Buffer (19)
- SQL (19)
- Exadata (18)
- Mongodb (18)
- Oracle Cloud Infrastructure (OCI) (18)
- Oracle Exadata (18)
- Automation (17)
- Hadoop (16)
- Oracleebs (16)
- Amazon RDS (15)
- Ansible (15)
- Ebs (15)
- Snowflake (15)
- ASM (13)
- BigQuery (13)
- Patching (13)
- RDS (13)
- Replication (13)
- Advanced Analytics (12)
- Data (12)
- GenAI (12)
- Kubernetes (12)
- Oracle 12C (12)
- Backup (11)
- LLM (11)
- Machine Learning (11)
- OCI (11)
- Rman (11)
- Cloud Migration (10)
- Datascape Podcast (10)
- Monitoring (10)
- R12 (10)
- 12C (9)
- AI (9)
- Apache Cassandra (9)
- Data Guard (9)
- Infrastructure (9)
- Oracle 19C (9)
- Oracle Applications (9)
- Python (9)
- Series (9)
- AWR (8)
- Amazon Web Services (AWS) (8)
- Articles (8)
- High Availability (8)
- Oracle EBS (8)
- Percona (8)
- Powershell (8)
- Recovery (8)
- Weblogic (8)
- Apache Beam (7)
- Backups (7)
- Data Governance (7)
- Goldengate (7)
- Innodb (7)
- Migration (7)
- Myrocks (7)
- OEM (7)
- Oracle Enterprise Manager (OEM) (7)
- Performance Tuning (7)
- Authentication (6)
- ChatGPT-4 (6)
- Data Enablement (6)
- Data Visualization (6)
- Database Performance (6)
- E-Business Suite (6)
- Fmw (6)
- Grafana (6)
- Oracle Enterprise Manager (6)
- Orchestrator (6)
- Postgres (6)
- Rac (6)
- Renew Refresh Republish (6)
- RocksDB (6)
- Serverless (6)
- Upgrade (6)
- 19C (5)
- Azure Data Factory (5)
- Azure Synapse Analytics (5)
- Cpu (5)
- Disaster Recovery (5)
- Error (5)
- Generative AI (5)
- Google BigQuery (5)
- Indexes (5)
- Love Letters To Data (5)
- Mariadb (5)
- Microsoft (5)
- Proxysql (5)
- Scala (5)
- Sql Server Administration (5)
- VMware (5)
- Windows (5)
- Xtrabackup (5)
- Airflow (4)
- Analytics (4)
- Apex (4)
- Best Practices (4)
- Centrally Managed Users (4)
- Cli (4)
- Cloud Spanner (4)
- Cockroachdb (4)
- Configuration Management (4)
- Container (4)
- Data Management (4)
- Data Pipeline (4)
- Data Security (4)
- Data Strategy (4)
- Database Administrator (4)
- Database Management (4)
- Database Migration (4)
- Dataflow (4)
- Dbsat (4)
- Elasticsearch (4)
- Fahd Mirza (4)
- Fusion Middleware (4)
- Google (4)
- Io (4)
- Java (4)
- Kafka (4)
- Middleware (4)
- Mysql 8 (4)
- Network (4)
- Ocidtab (4)
- Opatch (4)
- Oracle Autonomous Database (Adb) (4)
- Oracle Cloud (4)
- Pitr (4)
- Post-Mortem Analysis (4)
- Prometheus (4)
- Redhat (4)
- September 9Th 2015 (4)
- Sql2016 (4)
- Ssl (4)
- Terraform (4)
- Workflow (4)
- 2Fa (3)
- Alwayson (3)
- Amazon Relational Database Service (Rds) (3)
- Apache Kafka (3)
- Apexexport (3)
- Aurora (3)
- Azure Sql Db (3)
- Business Intelligence (3)
- Cdb (3)
- ChatGPT (3)
- Cloud Armor (3)
- Cloud Database (3)
- Cloud FinOps (3)
- Cloud Security (3)
- Cluster (3)
- Consul (3)
- Cosmos Db (3)
- Covid19 (3)
- Crontab (3)
- Data Analytics (3)
- Data Integration (3)
- Database 12C (3)
- Database Monitoring (3)
- Database Troubleshooting (3)
- Database Upgrade (3)
- Databases (3)
- Dataops (3)
- Dbt (3)
- Digital Transformation (3)
- ERP (3)
- Google Chrome (3)
- Google Cloud Sql (3)
- Graphite (3)
- Haproxy (3)
- Heterogeneous Database Migration (3)
- Hugepages (3)
- Inside Pythian (3)
- Installation (3)
- Json (3)
- Keras (3)
- Ldap (3)
- Liquibase (3)
- Love Letter (3)
- Lua (3)
- Mfa (3)
- Multitenant (3)
- Mysql 5.7 (3)
- Mysql Configuration (3)
- Nginx (3)
- Nodetool (3)
- Non-Tech Articles (3)
- Oem 13C (3)
- Oms (3)
- Oracle 18C (3)
- Oracle Data Guard (3)
- Oracle Live Sql (3)
- Oracle Rac (3)
- Patch (3)
- Perl (3)
- Pmm (3)
- Pt-Online-Schema-Change (3)
- Rdbms (3)
- Recommended (3)
- Remote Teams (3)
- Reporting (3)
- Reverse Proxy (3)
- S3 (3)
- Spark (3)
- Sql On The Edge (3)
- Sql Server Configuration (3)
- Sql Server On Linux (3)
- Ssis (3)
- Ssis Catalog (3)
- Stefan Knecht (3)
- Striim (3)
- Sysadmin (3)
- System Versioned (3)
- Systemd (3)
- Temporal Tables (3)
- Tensorflow (3)
- Tools (3)
- Tuning (3)
- Vasu Balla (3)
- Vault (3)
- Vulnerability (3)
- Waf (3)
- 18C (2)
- Adf (2)
- Adop (2)
- Agent (2)
- Agile (2)
- Amazon Data Migration Service (2)
- Amazon Ec2 (2)
- Amazon S3 (2)
- Apache Flink (2)
- Apple (2)
- Apps (2)
- Ashdump (2)
- Atp (2)
- Audit (2)
- Automatic Backups (2)
- Autonomous (2)
- Autoupgrade (2)
- Awr Data Mining (2)
- Azure Sql (2)
- Azure Sql Data Sync (2)
- Bash (2)
- Business (2)
- Caching (2)
- Cassandra Nodetool (2)
- Cdap (2)
- Certification (2)
- Cloning (2)
- Cloud Cost Optimization (2)
- Cloud Data Fusion (2)
- Cloud Hosting (2)
- Cloud Infrastructure (2)
- Cloud Shell (2)
- Cloud Sql (2)
- Cloudscape (2)
- Cluster Level Consistency (2)
- Conferences (2)
- Consul-Template (2)
- Containerization (2)
- Containers (2)
- Cosmosdb (2)
- Cost Management (2)
- Costs (2)
- Cql (2)
- Cqlsh (2)
- Cyber Security (2)
- Data Analysis (2)
- Data Discovery (2)
- Data Engineering (2)
- Data Migration (2)
- Data Modeling (2)
- Data Quality (2)
- Data Streaming (2)
- Data Warehouse (2)
- Database Consulting (2)
- Database Migrations (2)
- Dataguard (2)
- Datapump (2)
- Ddl (2)
- Debezium (2)
- Dictionary Views (2)
- Dms (2)
- Docker-Composer (2)
- Dr (2)
- Duplicate (2)
- Ecc (2)
- Elastic (2)
- Elastic Stack (2)
- Em12C (2)
- Encryption (2)
- Enterprise Data Platform (EDP) (2)
- Enterprise Manager (2)
- Etl (2)
- Events (2)
- Exachk (2)
- Filter Driver (2)
- Flume (2)
- Full Text Search (2)
- Galera (2)
- Gemini (2)
- General Purpose Ssd (2)
- Gh-Ost (2)
- Gke (2)
- Google Workspace (2)
- Hanganalyze (2)
- Hdfs (2)
- Health Check (2)
- Historical Trends (2)
- Incremental (2)
- Infiniband (2)
- Infrastructure As Code (2)
- Innodb Cluster (2)
- Innodb File Structure (2)
- Innodb Group Replication (2)
- Install (2)
- Internals (2)
- Java Web Start (2)
- Kibana (2)
- Log (2)
- Log4J (2)
- Logs (2)
- Memory (2)
- Merge Replication (2)
- Metrics (2)
- Mutex (2)
- MySQLShell (2)
- NLP (2)
- Neo4J (2)
- Node.Js (2)
- Nosql (2)
- November 11Th 2015 (2)
- Ntp (2)
- Oci Iam (2)
- Oem12C (2)
- Omspatcher (2)
- Opatchauto (2)
- Open Source Database (2)
- Operational Excellence (2)
- Oracle 11G (2)
- Oracle Datase (2)
- Oracle Extended Manager (Oem) (2)
- Oracle Flashback (2)
- Oracle Forms (2)
- Oracle Installation (2)
- Oracle Io Testing (2)
- Pdb (2)
- Podcast (2)
- Power Bi (2)
- Puppet (2)
- Pythian Europe (2)
- R12.2 (2)
- Redshift (2)
- Remote DBA (2)
- Remote Sre (2)
- SAP HANA Cloud (2)
- Sap Migration (2)
- Scale (2)
- Schema (2)
- September 30Th 2015 (2)
- September 3Rd 2015 (2)
- Shell (2)
- Simon Pane (2)
- Single Sign-On (2)
- Sql Server On Gke (2)
- Sqlplus (2)
- Sre (2)
- Ssis Catalog Error (2)
- Ssisdb (2)
- Standby (2)
- Statspack Mining (2)
- Systemstate Dump (2)
- Tablespace (2)
- Technical Training (2)
- Tempdb (2)
- Tfa (2)
- Throughput (2)
- Tls (2)
- Tombstones (2)
- Transactional Replication (2)
- User Groups (2)
- Vagrant (2)
- Variables (2)
- Virtual Machine (2)
- Virtual Machines (2)
- Virtualbox (2)
- Web Application Firewall (2)
- Webinars (2)
- X5 (2)
- scalability (2)
- //Build2019 (1)
- 11G (1)
- 12.1 (1)
- 12Cr1 (1)
- 12Cr2 (1)
- 18C Grid Installation (1)
- 2022 (1)
- 2022 Snowflake Summit (1)
- AI Platform (1)
- AI Summit (1)
- Actifio (1)
- Active Directory (1)
- Adaptive Hash Index (1)
- Adf Custom Email (1)
- Adobe Flash (1)
- Adrci (1)
- Advanced Data Services (1)
- Afd (1)
- After Logon Trigger (1)
- Ahf (1)
- Aix (1)
- Akka (1)
- Alloydb (1)
- Alter Table (1)
- Always On (1)
- Always On Listener (1)
- Alwayson With Gke (1)
- Amazon (1)
- Amazon Athena (1)
- Amazon Aurora Backtrack (1)
- Amazon Efs (1)
- Amazon Redshift (1)
- Amazon Sagemaker (1)
- Amazon Vpc Flow Logs (1)
- Amdu (1)
- Analysis (1)
- Analytical Models (1)
- Analyzing Bigquery Via Sheets (1)
- Anisble (1)
- Annual Mysql Community Dinner (1)
- Anthos (1)
- Apache (1)
- Apache Nifi (1)
- Apache Spark (1)
- Application Migration (1)
- Architect (1)
- Architecture (1)
- Ash (1)
- Asmlib (1)
- Atlas CLI (1)
- Audit In Postgres (1)
- Audit In Postgresql (1)
- Auto Failover (1)
- Auto Increment (1)
- Auto Index (1)
- Autoconfig (1)
- Automated Reports (1)
- Automl (1)
- Autostart (1)
- Awr Mining (1)
- Aws Glue (1)
- Aws Lake Formation (1)
- Aws Lambda (1)
- Azure Analysis Services (1)
- Azure Blob Storage (1)
- Azure Cognitive Search (1)
- Azure Data (1)
- Azure Data Lake (1)
- Azure Data Lake Analytics (1)
- Azure Data Lake Store (1)
- Azure Data Migration Service (1)
- Azure Dma (1)
- Azure Dms (1)
- Azure Document Intelligence (1)
- Azure Integration Runtime (1)
- Azure OpenAI (1)
- Azure Sql Data Warehouse (1)
- Azure Sql Dw (1)
- Azure Sql Managed Instance (1)
- Azure Vm (1)
- Backup For Sql Server (1)
- Bacpac (1)
- Bag (1)
- Bare Metal Solution (1)
- Batch Operation (1)
- Batches In Cassandra (1)
- Beats (1)
- Best Practice (1)
- Bi Publisher (1)
- Binary Logging (1)
- Bind Variables (1)
- Bitnami (1)
- Blob Storage Endpoint (1)
- Blockchain (1)
- Browsers (1)
- Btp Architecture (1)
- Btp Components (1)
- Buffer Pool (1)
- Bug (1)
- Bugs (1)
- Build 2019 Updates (1)
- Build Cassandra (1)
- Bundle Patch (1)
- Bushy Join (1)
- Business Continuity (1)
- Business Insights (1)
- Business Process Modelling (1)
- Business Reputation (1)
- CAPEX (1)
- Capacity Planning (1)
- Career (1)
- Career Development (1)
- Cassandra-Cli (1)
- Catcon.Pm (1)
- Catctl.Pl (1)
- Catupgrd.Sql (1)
- Cbo (1)
- Cdb Duplication (1)
- Certificate (1)
- Certificate Management (1)
- Chaos Engineering (1)
- Cheatsheet (1)
- Checkactivefilesandexecutables (1)
- Chmod (1)
- Chown (1)
- Chrome Enterprise (1)
- Chrome Security (1)
- Cl-Series (1)
- Cleanup (1)
- Cloud Browser (1)
- Cloud Build (1)
- Cloud Consulting (1)
- Cloud Data Warehouse (1)
- Cloud Database Management (1)
- Cloud Dataproc (1)
- Cloud Foundry (1)
- Cloud Manager (1)
- Cloud Migations (1)
- Cloud Networking (1)
- Cloud SQL Replica (1)
- Cloud Scheduler (1)
- Cloud Services (1)
- Cloud Strategies (1)
- Cloudformation (1)
- Cluster Resource (1)
- Cmo (1)
- Cockroach Db (1)
- Coding Benchmarks (1)
- Colab (1)
- Collectd (1)
- Columnar (1)
- Communication Plans (1)
- Community (1)
- Compact Storage (1)
- Compaction (1)
- Compliance (1)
- Compression (1)
- Compute Instances (1)
- Compute Node (1)
- Concurrent Manager (1)
- Concurrent Processing (1)
- Configuration (1)
- Consistency Level (1)
- Consolidation (1)
- Conversational AI (1)
- Covid-19 (1)
- Cpu Patching (1)
- Cqlsstablewriter (1)
- Crash (1)
- Create Catalog Error (1)
- Create_File_Dest (1)
- Credentials (1)
- Cross Platform (1)
- CrowdStrike (1)
- Crsctl (1)
- Custom Instance Images (1)
- Cve-2022-21500 (1)
- Cvu (1)
- Cypher Queries (1)
- DAX (1)
- DBSAT 3 (1)
- Dacpac (1)
- Dag (1)
- Data Analytics Platform (1)
- Data Box (1)
- Data Classification (1)
- Data Cleansing (1)
- Data Encryption (1)
- Data Estate (1)
- Data Flow Management (1)
- Data Insights (1)
- Data Integrity (1)
- Data Lake (1)
- Data Leader (1)
- Data Lifecycle Management (1)
- Data Lineage (1)
- Data Masking (1)
- Data Mesh (1)
- Data Migration Assistant (1)
- Data Migration Service (1)
- Data Mining (1)
- Data Monetization (1)
- Data Policy (1)
- Data Profiling (1)
- Data Protection (1)
- Data Retention (1)
- Data Safe (1)
- Data Sheets (1)
- Data Summit (1)
- Data Vault (1)
- Data Warehouse Modernization (1)
- Database Auditing (1)
- Database Consultant (1)
- Database Link (1)
- Database Modernization (1)
- Database Provisioning (1)
- Database Provisioning Failed (1)
- Database Replication (1)
- Database Scaling (1)
- Database Schemas (1)
- Database Security (1)
- Databricks (1)
- Datadog (1)
- Datafile (1)
- Datapatch (1)
- Dataprivacy (1)
- Datascape 59 (1)
- Datasets (1)
- Datastax Cassandra (1)
- Datastax Opscenter (1)
- Datasync Error (1)
- Db_Create_File_Dest (1)
- Dbaas (1)
- Dbatools (1)
- Dbcc Checkident (1)
- Dbms_Cloud (1)
- Dbms_File_Transfer (1)
- Dbms_Metadata (1)
- Dbms_Service (1)
- Dbms_Stats (1)
- Dbupgrade (1)
- Deep Learning (1)
- Delivery (1)
- Devd (1)
- Dgbroker (1)
- Dialogflow (1)
- Dict0Dict (1)
- Did You Know (1)
- Direct Path Read Temp (1)
- Disk Groups (1)
- Disk Management (1)
- Diskgroup (1)
- Dispatchers (1)
- Distributed Ag (1)
- Distribution Agent (1)
- Documentation (1)
- Download (1)
- Dp Agent (1)
- Duet AI (1)
- Duplication (1)
- Dynamic Sampling (1)
- Dynamic Tasks (1)
- E-Business Suite Cpu Patching (1)
- E-Business Suite Patching (1)
- Ebs Sso (1)
- Ec2 (1)
- Edb Postgresql Advanced Server (1)
- Edb Postgresql Password Verify Function (1)
- Editions (1)
- Edp (1)
- El Carro (1)
- Elassandra (1)
- Elk Stack (1)
- Em13Cr2 (1)
- Emcli (1)
- End of Life (1)
- Engineering (1)
- Enqueue (1)
- Enterprise (1)
- Enterprise Architecture (1)
- Enterprise Command Centers (1)
- Enterprise Manager Command Line Interface (Em Cli (1)
- Enterprise Plus (1)
- Episode 58 (1)
- Error Handling (1)
- Exacc (1)
- Exacheck (1)
- Exacs (1)
- Exadata Asr (1)
- Execution (1)
- Executive Sponsor (1)
- Expenditure (1)
- Export Sccm Collection To Csv (1)
- External Persistent Volumes (1)
- Fail (1)
- Failed Upgrade (1)
- Failover In Postgresql (1)
- Fall 2021 (1)
- Fast Recovery Area (1)
- Flash Recovery Area (1)
- Flashback (1)
- Fnd (1)
- Fndsm (1)
- Force_Matching_Signature (1)
- Fra Full (1)
- Framework (1)
- Freebsd (1)
- Fsync (1)
- Function-Based Index (1)
- GCVE Architecture (1)
- GPQA (1)
- Gaming (1)
- Garbagecollect (1)
- Gcp Compute (1)
- Gcp-Spanner (1)
- Geography (1)
- Geth (1)
- Getmospatch (1)
- Git (1)
- Global Analytics (1)
- Google Analytics (1)
- Google Cloud Architecture Framework (1)
- Google Cloud Data Services (1)
- Google Cloud Partner (1)
- Google Cloud Spanner (1)
- Google Cloud VMware Engine (1)
- Google Compute Engine (1)
- Google Dataflow (1)
- Google Datalab (1)
- Google Grab And Go (1)
- Google Sheets (1)
- Gp2 (1)
- Graph Algorithms (1)
- Graph Databases (1)
- Graph Inferences (1)
- Graph Theory (1)
- GraphQL (1)
- Graphical User Interface (Gui) (1)
- Grid (1)
- Grid Infrastructure (1)
- Griddisk Resize (1)
- Grp (1)
- Guaranteed Restore Point (1)
- Guid Mismatch (1)
- HR Technology (1)
- HRM (1)
- Ha (1)
- Hang (1)
- Hashicorp (1)
- Hbase (1)
- Hcc (1)
- Hdinsight (1)
- Healthcheck (1)
- Hemantgiri S. Goswami (1)
- Hortonworks (1)
- How To Install Ssrs (1)
- Hr (1)
- Httpchk (1)
- Https (1)
- Huge Pages (1)
- HumanEval (1)
- Hung Database (1)
- Hybrid Columnar Compression (1)
- Hyper-V (1)
- Hyperscale (1)
- Hypothesis Driven Development (1)
- Ibm (1)
- Identity Management (1)
- Idm (1)
- Ilom (1)
- Imageinfo (1)
- Impdp (1)
- In Place Upgrade (1)
- Incident Response (1)
- Indempotent (1)
- Indexing In Mongodb (1)
- Influxdb (1)
- Information (1)
- Infrastructure As A Code (1)
- Injection (1)
- Innobackupex (1)
- Innodb Concurrency (1)
- Innodb Flush Method (1)
- Insights (1)
- Installing (1)
- Instance Cloning (1)
- Integration Services (1)
- Integrations (1)
- Interactive_Timeout (1)
- Interval Partitioning (1)
- Invisible Indexes (1)
- Io1 (1)
- IoT (1)
- Iops (1)
- Iphone (1)
- Ipv6 (1)
- Iscsi (1)
- Iscsi-Initiator-Utils (1)
- Iscsiadm (1)
- Issues (1)
- It Industry (1)
- It Teams (1)
- JMX Metrics (1)
- Jared Still (1)
- Javascript (1)
- Jdbc (1)
- Jinja2 (1)
- Jmx (1)
- Jmx Monitoring (1)
- Jvm (1)
- Jython (1)
- K8S (1)
- Kernel (1)
- Key Btp Components (1)
- Kfed (1)
- Kill Sessions (1)
- Knapsack (1)
- Kubeflow (1)
- LMSYS Chatbot Arena (1)
- Large Pages (1)
- Latency (1)
- Latest News (1)
- Leadership (1)
- Leap Second (1)
- Limits (1)
- Line 1 (1)
- Linkcolumn (1)
- Linux Host Monitoring (1)
- Linux Storage Appliance (1)
- Listener (1)
- Loadavg (1)
- Lock_Sga (1)
- Locks (1)
- Log File Switch (Archiving Needed) (1)
- Logfile (1)
- Looker (1)
- Lvm (1)
- MMLU (1)
- Managed Instance (1)
- Managed Services (1)
- Management (1)
- Management Servers (1)
- Marketing (1)
- Marketing Analytics (1)
- Martech (1)
- Masking (1)
- Megha Bedi (1)
- Metadata (1)
- Method-R Workbench (1)
- Metric (1)
- Metric Extensions (1)
- Michelle Gutzait (1)
- Microservices (1)
- Microsoft Azure Sql Database (1)
- Microsoft Build (1)
- Microsoft Build 2019 (1)
- Microsoft Ignite (1)
- Microsoft Inspire 2019 (1)
- Migrate (1)
- Migrating Ssis Catalog (1)
- Migrating To Azure Sql (1)
- Migration Checklist (1)
- Mirroring (1)
- Mismatch (1)
- Model Governance (1)
- Monetization (1)
- MongoDB Atlas (1)
- MongoDB Compass (1)
- Ms Excel (1)
- Msdtc (1)
- Msdtc In Always On (1)
- Msdtc In Cluster (1)
- Multi-IP (1)
- Multicast (1)
- Multipath (1)
- My.Cnf (1)
- MySQL Shell Logical Backup (1)
- MySQLDump (1)
- Mysql Enterprise (1)
- Mysql Plugin For Oracle Enterprise Manager (1)
- Mysql Replication Filters (1)
- Mysql Server (1)
- Mysql-Python (1)
- Nagios (1)
- Ndb (1)
- Net_Read_Timeout (1)
- Net_Write_Timeout (1)
- Netcat (1)
- Newsroom (1)
- Nfs (1)
- Nifi (1)
- Node (1)
- November 10Th 2015 (1)
- November 6Th 2015 (1)
- Null Columns (1)
- Nullipotent (1)
- OPEX (1)
- ORAPKI (1)
- O_Direct (1)
- Oacore (1)
- October 21St 2015 (1)
- October 6Th 2015 (1)
- October 8Th 2015 (1)
- Oda (1)
- Odbcs (1)
- Odbs (1)
- Odi (1)
- Oel (1)
- Ohs (1)
- Olvm (1)
- On-Prem To Azure Sql (1)
- On-Premises (1)
- Onclick (1)
- Open.Canada.Ca (1)
- Openstack (1)
- Operating System Monitoring (1)
- Oplog (1)
- Opsworks (1)
- Optimization (1)
- Optimizer (1)
- Ora-01852 (1)
- Ora-7445 (1)
- Oracle 19 (1)
- Oracle 20C (1)
- Oracle Cursor (1)
- Oracle Database 12.2 (1)
- Oracle Database Appliance (1)
- Oracle Database Se2 (1)
- Oracle Database Standard Edition 2 (1)
- Oracle Database Upgrade (1)
- Oracle Database@Google Cloud (1)
- Oracle Exadata Smart Scan (1)
- Oracle Licensing (1)
- Oracle Linux Virtualization Manager (1)
- Oracle Oda (1)
- Oracle Openworld (1)
- Oracle Parallelism (1)
- Oracle Rdbms (1)
- Oracle Real Application Clusters (1)
- Oracle Reports (1)
- Oracle Security (1)
- Oracle Wallet (1)
- Orasrp (1)
- Organizational Change (1)
- Orion (1)
- Os (1)
- Osbws_Install.Jar (1)
- Oui Gui (1)
- Output (1)
- Owox (1)
- Paas (1)
- Package Deployment Wizard Error (1)
- Parallel Execution (1)
- Parallel Query (1)
- Parallel Query Downgrade (1)
- Partitioning (1)
- Partitions (1)
- Password (1)
- Password Change (1)
- Password Recovery (1)
- Password Verify Function In Postgresql (1)
- Patches (1)
- Patchmgr (1)
- Pdb Duplication (1)
- Penalty (1)
- Perfomrance (1)
- Performance Schema (1)
- Pg 15 (1)
- Pg_Rewind (1)
- Pga (1)
- Pipeline Debugging (1)
- Pivot (1)
- Planning (1)
- Plsql (1)
- Policy (1)
- Polybase (1)
- Post-Acquisition (1)
- Post-Covid It (1)
- Postgresql Complex Password (1)
- Postgresql With Repmgr Integration (1)
- Pq (1)
- Preliminar Connection (1)
- Preliminary Connection (1)
- Privatecloud (1)
- Process Mining (1)
- Production (1)
- Productivity (1)
- Profile In Edb Postgresql (1)
- Programming (1)
- Prompt Engineering (1)
- Provisioned Iops (1)
- Provisiones Iops (1)
- Proxy Monitoring (1)
- Psu (1)
- Public Cloud (1)
- Pubsub (1)
- Purge (1)
- Purge Thread (1)
- Pythian Blackbird Acquisition (1)
- Pythian Goodies (1)
- Pythian News (1)
- Python Pandas (1)
- Query Performance (1)
- Quicksight (1)
- Quota Limits (1)
- R12 R12.2 Cp Concurrent Processing Abort (1)
- R12.1.3 (1)
- REF! (1)
- Ram Cache (1)
- Rbac (1)
- Rdb (1)
- Rds_File_Util (1)
- Read Free Replication (1)
- Read Latency (1)
- Read Only (1)
- Read Replica (1)
- Reboot (1)
- Recruiting (1)
- Redo Size (1)
- Relational Database Management System (1)
- Release (1)
- Release Automation (1)
- Repair (1)
- Replication Compatibility (1)
- Replication Error (1)
- Repmgr (1)
- Repmgrd (1)
- Reporting Services 2019 (1)
- Resiliency Planning (1)
- Resource Manager (1)
- Resources (1)
- Restore (1)
- Restore Point (1)
- Retail (1)
- Rhel (1)
- Risk (1)
- Risk Management (1)
- Rocksrb (1)
- Role In Postgresql (1)
- Rollback (1)
- Rolling Patch (1)
- Row0Purge (1)
- Rpm (1)
- Rule "Existing Clustered Or Clustered-Prepared In (1)
- Running Discovery On Remote Machine (1)
- SAP (1)
- SQL Optimization (1)
- SQL Tracing (1)
- SSRS Administration (1)
- SaaS (1)
- Sap Assessment (1)
- Sap Assessment Report (1)
- Sap Backup Restore (1)
- Sap Btp Architecture (1)
- Sap Btp Benefits (1)
- Sap Btp Model (1)
- Sap Btp Services (1)
- Sap Homogenous System Copy Method (1)
- Sap Landscape Copy (1)
- Sap Migration Assessment (1)
- Sap On Mssql (1)
- Sap System Copy (1)
- Sar (1)
- Scaling Ir (1)
- Sccm (1)
- Sccm Powershell (1)
- Scheduler (1)
- Scheduler_Job (1)
- Schedulers (1)
- Scheduling (1)
- Scott Mccormick (1)
- Scripts (1)
- Sdp (1)
- Secrets (1)
- Securing Sql Server (1)
- Security Compliance (1)
- Sed (Stream Editor) (1)
- Self Hosted Ir (1)
- Semaphore (1)
- Seps (1)
- September 11Th 2015 (1)
- Serverless Computing (1)
- Serverless Framework (1)
- Service Broker (1)
- Service Bus (1)
- Shared Connections (1)
- Shared Storage (1)
- Shellshock (1)
- Signals (1)
- Silent (1)
- Slave (1)
- Slob (1)
- Smart Scan (1)
- Smtp (1)
- Snapshot (1)
- Snowday Fall 2021 (1)
- Socat (1)
- Software Development (1)
- Software Engineering (1)
- Solutions Architecture (1)
- Spanner-Backups (1)
- Sphinx (1)
- Split Brain In Postgresql (1)
- Spm (1)
- Sql Agent (1)
- Sql Backup To Url Error (1)
- Sql Cluster Installer Hang (1)
- Sql Database (1)
- Sql Developer (1)
- Sql On Linux (1)
- Sql Server 2014 (1)
- Sql Server 2016 (1)
- Sql Server Agent On Linux (1)
- Sql Server Backups (1)
- Sql Server Denali Is Required To Install Integrat (1)
- Sql Server Health Check (1)
- Sql Server Troubleshooting On Linux (1)
- Sql Server Version (1)
- Sql Setup (1)
- Sql Vm (1)
- Sql2K19Ongke (1)
- Sqldatabase Serverless (1)
- Ssh User Equivalence (1)
- Ssis Denali Error (1)
- Ssis Install Error E Xisting Clustered Or Cluster (1)
- Ssis Package Deployment Error (1)
- Ssisdb Master Key (1)
- Ssisdb Restore Error (1)
- Sso (1)
- Ssrs 2019 (1)
- Sstable2Json (1)
- Sstableloader (1)
- Sstablesimpleunsortedwriter (1)
- Stack Dump (1)
- Standard Edition (1)
- Startup Process (1)
- Statistics (1)
- Statspack (1)
- Statspack Data Mining (1)
- Statspack Erroneously Reporting (1)
- Statspack Issues (1)
- Storage (1)
- Stored Procedure (1)
- Strategies (1)
- Streaming (1)
- Sunos (1)
- Swap (1)
- Swapping (1)
- Switch (1)
- Syft (1)
- Synapse (1)
- Sync Failed There Is Not Enough Space On The Disk (1)
- Sys Schema (1)
- System Function (1)
- Systems Administration (1)
- T-Sql (1)
- Table Optimization (1)
- Tablespace Growth (1)
- Tablespaces (1)
- Tags (1)
- Tar (1)
- Tde (1)
- Team Management (1)
- Tech Debt (1)
- Technology (1)
- Telegraf (1)
- Tempdb Encryption (1)
- Templates (1)
- Temporary Tablespace (1)
- Tenserflow (1)
- Teradata (1)
- Testing New Cassandra Builds (1)
- There Is Not Enough Space On The Disk (1)
- Thick Data (1)
- Third-Party Data (1)
- Thrift (1)
- Thrift Data (1)
- Tidb (1)
- Time Series (1)
- Time-Drift (1)
- Tkprof (1)
- Tmux (1)
- Tns (1)
- Trace (1)
- Tracefile (1)
- Training (1)
- Transaction Log (1)
- Transactions (1)
- Transformation Navigator (1)
- Transparent Data Encryption (1)
- Trigger (1)
- Triggers On Memory-Optimized Tables Must Use With (1)
- Troubleshooting (1)
- Tungsten (1)
- Tvdxtat (1)
- Twitter (1)
- U-Sql (1)
- UNDO Tablespace (1)
- Upgrade Issues (1)
- Uptime (1)
- Uptrade (1)
- Url Backup Error (1)
- Usability (1)
- Use Cases (1)
- User (1)
- User Defined Compactions (1)
- Utilization (1)
- Utl_Smtp (1)
- VDI Jump Host (1)
- Validate Structure (1)
- Validate_Credentials (1)
- Value (1)
- Velocity (1)
- Vertex AI (1)
- Vertica (1)
- Vertical Slicing (1)
- Videos (1)
- Virtual Private Cloud (1)
- Virtualization (1)
- Vision (1)
- Vpn (1)
- Wait_Timeout (1)
- Wallet (1)
- Webhook (1)
- Weblogic Connection Filters (1)
- Webscale Database (1)
- Windows 10 (1)
- Windows Powershell (1)
- WiredTiger (1)
- With Native_Compilation (1)
- Word (1)
- Workshop (1)
- Workspace Security (1)
- Xbstream (1)
- Xml Publisher (1)
- Zabbix (1)
- dbms_Monitor (1)
- postgresql 16 (1)
- sqltrace (1)
- tracing (1)
- vSphere (1)
- xml (1)
- December 2024 (1)
- October 2024 (2)
- September 2024 (7)
- August 2024 (4)
- July 2024 (2)
- June 2024 (6)
- May 2024 (3)
- April 2024 (2)
- February 2024 (1)
- January 2024 (11)
- December 2023 (10)
- November 2023 (11)
- October 2023 (10)
- September 2023 (8)
- August 2023 (6)
- July 2023 (2)
- June 2023 (13)
- May 2023 (4)
- April 2023 (6)
- March 2023 (10)
- February 2023 (6)
- January 2023 (5)
- December 2022 (10)
- November 2022 (10)
- October 2022 (10)
- September 2022 (13)
- August 2022 (16)
- July 2022 (12)
- June 2022 (13)
- May 2022 (11)
- April 2022 (4)
- March 2022 (5)
- February 2022 (4)
- January 2022 (14)
- December 2021 (16)
- November 2021 (11)
- October 2021 (6)
- September 2021 (11)
- August 2021 (6)
- July 2021 (9)
- June 2021 (4)
- May 2021 (8)
- April 2021 (16)
- March 2021 (16)
- February 2021 (6)
- January 2021 (12)
- December 2020 (12)
- November 2020 (17)
- October 2020 (11)
- September 2020 (10)
- August 2020 (11)
- July 2020 (13)
- June 2020 (6)
- May 2020 (9)
- April 2020 (18)
- March 2020 (21)
- February 2020 (13)
- January 2020 (15)
- December 2019 (10)
- November 2019 (11)
- October 2019 (12)
- September 2019 (16)
- August 2019 (15)
- July 2019 (10)
- June 2019 (16)
- May 2019 (20)
- April 2019 (21)
- March 2019 (14)
- February 2019 (18)
- January 2019 (18)
- December 2018 (5)
- November 2018 (16)
- October 2018 (12)
- September 2018 (20)
- August 2018 (27)
- July 2018 (31)
- June 2018 (34)
- May 2018 (28)
- April 2018 (27)
- March 2018 (17)
- February 2018 (8)
- January 2018 (20)
- December 2017 (14)
- November 2017 (4)
- October 2017 (1)
- September 2017 (3)
- August 2017 (5)
- July 2017 (4)
- June 2017 (2)
- May 2017 (7)
- April 2017 (7)
- March 2017 (8)
- February 2017 (8)
- January 2017 (5)
- December 2016 (3)
- November 2016 (4)
- October 2016 (8)
- September 2016 (9)
- August 2016 (10)
- July 2016 (9)
- June 2016 (8)
- May 2016 (13)
- April 2016 (16)
- March 2016 (13)
- February 2016 (11)
- January 2016 (6)
- December 2015 (11)
- November 2015 (11)
- October 2015 (5)
- September 2015 (16)
- August 2015 (4)
- July 2015 (1)
- June 2015 (3)
- May 2015 (6)
- April 2015 (5)
- March 2015 (5)
- February 2015 (4)
- January 2015 (3)
- December 2014 (7)
- October 2014 (4)
- September 2014 (6)
- August 2014 (6)
- July 2014 (16)
- June 2014 (7)
- May 2014 (6)
- April 2014 (5)
- March 2014 (4)
- February 2014 (10)
- January 2014 (6)
- December 2013 (8)
- November 2013 (12)
- October 2013 (9)
- September 2013 (6)
- August 2013 (7)
- July 2013 (9)
- June 2013 (7)
- May 2013 (7)
- April 2013 (4)
- March 2013 (7)
- February 2013 (4)
- January 2013 (4)
- December 2012 (6)
- November 2012 (8)
- October 2012 (9)
- September 2012 (3)
- August 2012 (5)
- July 2012 (5)
- June 2012 (7)
- May 2012 (11)
- April 2012 (1)
- March 2012 (8)
- February 2012 (1)
- January 2012 (6)
- December 2011 (8)
- November 2011 (5)
- October 2011 (9)
- September 2011 (6)
- August 2011 (4)
- July 2011 (1)
- June 2011 (1)
- May 2011 (5)
- April 2011 (2)
- February 2011 (2)
- January 2011 (2)
- December 2010 (1)
- November 2010 (7)
- October 2010 (3)
- September 2010 (8)
- August 2010 (2)
- July 2010 (4)
- June 2010 (7)
- May 2010 (2)
- April 2010 (1)
- March 2010 (3)
- February 2010 (3)
- January 2010 (2)
- November 2009 (6)
- October 2009 (6)
- August 2009 (3)
- July 2009 (3)
- June 2009 (3)
- May 2009 (2)
- April 2009 (8)
- March 2009 (6)
- February 2009 (4)
- January 2009 (3)
- November 2008 (3)
- October 2008 (7)
- September 2008 (6)
- August 2008 (9)
- July 2008 (9)
- June 2008 (9)
- May 2008 (9)
- April 2008 (8)
- March 2008 (4)
- February 2008 (3)
- January 2008 (3)
- December 2007 (2)
- November 2007 (7)
- October 2007 (1)
- August 2007 (4)
- July 2007 (3)
- June 2007 (8)
- May 2007 (4)
- April 2007 (2)
- March 2007 (2)
- February 2007 (5)
- January 2007 (8)
- December 2006 (1)
- November 2006 (3)
- October 2006 (4)
- September 2006 (3)
- July 2006 (1)
- May 2006 (2)
- April 2006 (1)
- July 2005 (1)
No Comments Yet
Let us know what you think