Share this
Mining Statspack and AWR Repositories for Historical Trends
by Jure Bratina on Aug 10, 2020 12:00:00 AM
statspack_load_trends.sql
1. Script's Properties
Let's summarize the script's main properties:- It queries the Statspack repository directly and doesn't create any (temporary) objects, nor relies on any pre-created Statspack reports.
- We can use it to analyze a Statspack repository imported from another DB, containing data with a different DBID as the DB hosting the repository.
- We can analyze a period spanning instance restart(s). The script considers only adjacent snapshot pairs having the same startup_time value. In this case, "adjacent" denotes two snapshots which belong to the same [DBID, instance number] pair, and which SNAP_IDs are closest to each other when ordered. That's just to emphasize that the difference between two consecutive SNAP_IDs is not always one (think RAC with cached sequence values, an instance restart, or pressure on the shared pool).
2. Purpose
The script provides a quick high-level overview of the DB workload dynamics. It reports a combination of historical OS utilization statistics (stats$osstat), system time model statistics (stats$sys_time_model), and aggregated instance-level statistics (stats$sysstat) for a given period. Currently, it doesn't query stats$system_event for wait event details. Several time-based metrics are presented in a form of Average Active Sessions (AAS), calculated by simply dividing the observed time-based metric by the elapsed time in the observed period. You can download the script here, and its AWR counterpart is available here. Before running the AWR version, make sure the database has the Diagnostics Pack license. The following explanation applies to both scripts. Note: I got the idea for this script from various AWR mining scripts in Chapter 5 (Sizing Exadata) from the "Oracle Exadata Recipes: A Problem-Solution Approach" book. Additionally, the idea to calculate and display CPU core-normalized values for some of the CPU usage statistics originates from John Beresniewicz's AWR1page project.3. Calculating CPU Capacity
The script considers the number of CPU cores, and not threads (in case hyperthreading is enabled) to calculate the number of CPU seconds between two Statspack snapshots. Various publications explain the reasons for this approach, but to summarize: Depending on the workload type, hyperthreading can provide up to approx. 30% higher CPU throughput compared to non-hyperthread mode. When the number of processes running on CPU approach the number of CPU cores, the system might become CPU saturated/over-subscribed. At that point, its response time becomes unpredictable, and additional workload decreases the amount of useful work performed by the system.4. Usage
The script produces a very wide output, so I recommend spooling it out to a file for easier viewing. Because Statspack tables have public synonyms, any user that has permission to select from the repository tables can run it. Note: I've seen the script fail with errors like "ORA-00936: missing expression," or "ORA-01722: invalid number" when used on databases running with cursor_sharing=FORCE. To avoid the error, I included the /*+ cursor_sharing_exact*/ hint in the script's SELECT statement. Setting cursor_sharing=EXACT at the session-level is also a valid alternative.SQL> spool load_trends.txt SQL> @statspack_load_trends.sqlFirst, we provide the DBID and instance number we want to analyze. If we don't provide an instance number, all of the instances for the provided DBID are considered:
Instances in this Statspack schema ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DB Id |Inst Num|DB Name |Instance |Host -----------|--------|------------|------------|------------- 1558102526| 1|ORCL |orcl1 |ol7-122-rac1 1558102526| 2|ORCL |orcl2 |ol7-122-rac2 Enter DBID to analyze - default "1558102526" : /* enter DBID to analyze */ Enter instance number or "all" to analyze all instancs for DBID = 1558102526 - default "all" : /* report data for a specific RAC instance or all of them */Next, we provide a time range to analyze.
5. Sample Output
Let's check what the output looks like. Due to its width, and to fit the blog format, it's segmented in several sections. Also, due to some (temporary) blog formatting limitations, I recommend viewing wide code sections by clicking "Open code in new window."- "CPU #Cores;#Threads": The number of CPU cores and threads (in case of enabled hyperthreading) reported by the OS.
- "Tot CPU Time Avail [Cores] (s)": The number of CPU seconds available between the two analyzed snapshots based on the number of CPU cores.
Instance|Snap ID |Begin Snap |End Snap |Elapsed| CPU| Tot CPU Time| Number|start-end |Time |Time | Mins|#Cores;#Threads|Avail [Cores] (s)| --------|---------------|---------------|---------------|-------|---------------|-----------------| 1|19195-19196 |16-APR-20 17:00|16-APR-20 18:00| 59.98| 24; 48| 86,376.00| |19196-19197 |16-APR-20 18:00|16-APR-20 19:00| 60.00| 24; 48| 86,400.00| |19197-19198 |16-APR-20 19:00|16-APR-20 20:00| 60.00| 24; 48| 86,400.00| |19198-19199 |16-APR-20 20:00|16-APR-20 21:00| 60.02| 24; 48| 86,424.00| |19199-19200 |16-APR-20 21:00|16-APR-20 22:00| 59.98| 24; 48| 86,376.00|Note: One hour between snapshots is probably excessive, but that's beyond the scope of this post.
Time Model Statistics: stats$sys_time_model
The next section reports the time spent in the database in the form of Average Active Sessions (AAS). For completeness, and to better understand what the figures represent, I'm including how various statistics from stats$sys_time_model are related:DB time = CPU + Wait time spent by foreground sessions background elapsed time = CPU + Wait time spent by background sessions DB CPU = CPU time spent by foreground sessions background cpu time = CPU time spent by background sessionsConsidering the above, we can calculate the AAS figures as follows:
Total AAS = ("DB time" + "background elapsed time")/elapsed_time Total AAS on CPU = ("DB CPU" + "background cpu time")/elapsed_time FG AAS = "DB time" / elapsed_time BG AAS = "background elapsed time" / elapsed_time FG AAS on CPU = "DB CPU" / elapsed_time BG AAS on CPU = "background cpu time" / elapsed_time Total AAS in wait = ("Total AAS" - "Total AAS on CPU") / elapsed_time FG AAS in wait = ("DB time" - "DB CPU") / elapsed_time BG AAS in wait = ("background elapsed time" - "background cpu time") / elapsed_timeColumns reporting CPU-related figures display two values: The "usual" AAS value, and the "core-normalized Average Active Sessions" value, using the acronym "NPC". If the core-normalized value approaches (or even crosses) the value of "1," the system could potentially be CPU saturated:
- "AAS [FG+BG]": The number of AAS considering foreground and background sessions.
- "AAS [FG]": The number of AAS considering foreground sessions only.
- "AAS [BG]": The number of AAS considering background sessions only.
- "AAS on CPU [FG+BG]": The number of AAS on CPU considering foreground and background sessions, followed by core-normalized AAS on CPU (NPC).
- "AAS on CPU [FG]": Same as above, though only considering foreground sessions.
- "AAS on CPU [BG]": Same as above, though only considering background sessions.
AAS| AAS| AAS|AAS on CPU| AAS on CPU|AAS on |AAS on CPU|AAS on |AAS on CPU| AAS wait| AAS wait| AAS wait| | [FG+BG]| [FG]| [BG]|[FG+BG] |[FG+BG] NPC|CPU [FG]| [FG] NPC|CPU [BG]|[BG] NPC | [FG+BG]| [FG]| [BG]|AAS RMAN CPU | ---------|---------|---------|----------|-----------|--------|----------|--------|----------|---------|---------|---------|-------------| 96.4| 94.3| 2.0| 8.5| 0.4| 8.3| 0.3| 0.2| 0.0| 87.9| 86.0| 1.9| 0.0| 32.9| 31.6| 1.3| 10.3| 0.4| 10.1| 0.4| 0.2| 0.0| 22.5| 21.4| 1.1| 0.0| 59.4| 58.9| 0.6| 23.3| 1.0| 23.2| 1.0| 0.1| 0.0| 36.2| 35.7| 0.5| 0.0| 13.3| 12.9| 0.5| 5.8| 0.2| 5.7| 0.2| 0.1| 0.0| 7.5| 7.1| 0.4| 0.0| 23.0| 22.2| 0.8| 6.0| 0.3| 5.9| 0.2| 0.1| 0.0| 17.0| 16.3| 0.7| 0.0|The first line reports 94.3 foreground AAS, out of which only 8.3 were on CPU, and 86 were in various waits. Looking at the third line, the situation changes, as out of the 58.9 AAS, 23.3 were on CPU, and 35.7 in waits. Checking the per-CPU-core-normalized value, we see it reports 1, which means the machine might be approaching or has already crossed CPU saturation. We also see that there was no RMAN activity occurring during that time. Background processes also spent most of their time in waits, rather than on CPU. For convenience, we have displayed the number of seconds consumed by foreground sessions, breaking them further down into CPU and wait components, and reporting the relative percentages. This is basically the same information we saw in the previous section, just expressed as time instead of AAS:
DB Time (s) DB CPU (s) | [FG CPU+WAIT] = [FG CPU] + [FG WAIT] | ---------------------------------------------------------| 339,555.62 = 29,924.51 9% + 309,631.11 91% | 113,683.70 = 36,469.52 32% + 77,214.18 68% | 211,880.46 = 83,404.47 39% + 128,475.99 61% | 46,325.13 = 20,692.78 45% + 25,632.35 55% | 79,966.07 = 21,274.38 27% + 58,691.69 73% |
OS Statistics - stats$osstat
Next, OS statistics from stats$osstat are displayed. "Tot OS Load@end_snap" is the recorded OS load at the time of the end snapshot creation. The other four columns represent Average Active Processes (AAP), which is simply the measured time of each named statistic divided by elapsed time in the observed period. Similarly, as above, the normalized value per core is also reported here for the BUSY statistic (sum of USER+SYS). The meaning is the same; If the value approaches 1, the system might be CPU saturated. In our sample report, the third line reports 23.9 processes on CPU, or 1 per CPU core (that's considering all the OS processes, not only Oracle's). That also correlates with the "AAS on CPU [FG+BG]" figure in the third line we saw in the above snippet. Because in this particular case the machine is dedicated to one Oracle instance, it used all of the available CPU:Tot OS| |AAP OS | AAP OS| AAP OS| AAP OS| Load@end_snap|AAP OS BUSY|BUSY NPC| USER| SYS| IOWAIT| -------------|-----------|--------|---------|---------|---------| 37.0| 9.2| 0.4| 8.2| 0.9| 12.1| 76.8| 10.8| 0.4| 9.8| 0.9| 5.3| 9.4| 23.9| 1.0| 22.9| 0.9| 2.3| 4.3| 6.2| 0.3| 5.7| 0.5| 1.4| 4.8| 6.4| 0.3| 5.6| 0.7| 4.7|
System Statistics: stats$sysstat
Finally, stats$sysstat reports various system statistics. I won’t describe their meaning because that's beyond the scope of this post. It's worth noting that apart from "Logons Current," almost all other statistics are expressed in units of work per second. The only exceptions are statistics related to parallel operations. Because their usage usually pertains to "heavy-duty" DDL/DML tasks, we don't expect to see many such operations per second. Thus, the whole snapshot interval seems a more appropriate time-frame to report the number of occurrences of such events.Logons| | User| |SQL*Net roundtrips|SQL*Net roundtrips| Bytes received via| Bytes sent via| Bytes received via| Current|Logons/s| calls/s| Executes/s| to/from client/s| to/from dblink/s|SQL*Net from client/s|SQL*Net to client/s|SQL*Net from dblink/s| ----------|--------|----------|------------|------------------|------------------|---------------------|-------------------|---------------------| 556.0| 9.5| 872.9| 692.2| 723.0| 4,575.6| 1,846,238.6| 6,305,967.2| 1,177,004.3| 527.0| 16.2| 1,008.0| 639.4| 828.5| 5,773.2| 2,462,067.1| 7,760,807.5| 1,453,024.0| 607.0| 18.5| 738.8| 588.3| 556.1| 5,618.1| 1,986,647.1| 3,644,026.9| 1,448,627.4| 427.0| 9.2| 873.3| 910.0| 716.4| 5,972.3| 2,691,244.6| 4,067,039.1| 1,532,389.7| 418.0| 7.4| 719.9| 627.8| 588.5| 7,471.6| 2,564,916.7| 3,773,344.1| 1,852,806.9| Bytes sent via|Cluster wait|Session logical| DB block| Consistent| Consistent reads | Physical| Physical|Physical read|Physical write| SQL*Net to dblink/s| time/s| reads/s| changes/s| changes/sec|undo rec applied/s| reads/s| writes/s|IO requests/s| IO requests/s| -------------------|------------|---------------|--------------|--------------|------------------|----------|----------|-------------|--------------| 576,510.8| 0.0| 339,009.8| 31,353.8| 3,062.0| 4,002.4| 47,349.4| 1,879.1| 2,621.5| 448.5| 726,935.7| 0.0| 487,469.9| 48,874.4| 487.3| 563.9| 31,277.7| 2,127.6| 5,021.6| 526.8| 707,648.6| 0.0| 343,665.8| 38,862.0| 379.4| 362.9| 37,057.7| 777.7| 1,949.2| 265.2| 751,698.7| 0.0| 288,724.2| 26,163.7| 618.0| 435.8| 14,001.6| 823.3| 828.5| 274.1| 940,096.3| 0.0| 335,631.4| 24,500.0| 198.5| 211.9| 53,625.8| 638.2| 2,451.6| 227.5| Parses| Hard| Parse| Parse| User| User| Redo size| Redo| Rollback changes| total/s| parses/s|describe/s|failures/s| commits/s|rollbacks/s| bytes/s| writes/s|undo records applied/s| ----------|----------|----------|----------|----------|-----------|--------------|--------------|----------------------| 142.0| 103.9| 0.0| 0.0| 158.2| 0.8| 46,951,095.1| 137.8| 0.1| 143.4| 100.1| 0.0| 0.3| 155.0| 0.8| 49,017,168.1| 170.3| 1.2| 135.9| 89.2| 0.0| 0.1| 143.3| 0.8| 11,513,858.2| 149.7| 0.1| 141.1| 109.8| 0.0| 0.0| 284.4| 0.8| 9,513,089.1| 226.2| 0.1| 123.0| 93.4| 0.0| 0.0| 175.5| 0.9| 7,462,206.6| 169.3| 0.3| Queries| DML statements| PX oper not|PX oper downgraded|PX oper downgraded|PX oper downgraded|PX oper downgraded|PX oper downgraded parallelized/Total|parallelized/Total|downgraded/Total| to serial/Total|75 to 99 pct/Total|50 to 75 pct/Total|25 to 50 pct/Total| 1 to 25 pct/Total ------------------|------------------|----------------|------------------|------------------|------------------|------------------|------------------ 1,912.0| 3.0| 1,989.0| 38.0| 0.0| 1.0| 4.0| 1.0 2,450.0| 6.0| 2,551.0| 10.0| 0.0| 0.0| 0.0| 0.0 2,477.0| 13.0| 2,584.0| 9.0| 0.0| 0.0| 0.0| 0.0 1,553.0| 3.0| 1,646.0| 9.0| 0.0| 0.0| 0.0| 0.0 1,390.0| 2.0| 1,487.0| 8.0| 0.0| 0.0| 0.0| 0.0
6. Visualizing Results
When comparing a period where there was an issue to one where the database was running fine, or also when just checking for trends, it's more convenient to plot the results. That's an easy way to get an overview of how certain metrics changed over time, or how do they compare across nodes on a RAC database. To ease that task, the two scripts contain two ways of formatting columns: One for plotting/charting purposes, and one displaying column headings on two lines for a more user-friendly format (the format used in the above descriptions). Based on the needs, the appropriate block of column formatting commands has to be uncommented in the script. You can plot results using a third-party utility, such as Tableau, which is used to produce graphs in the following sections.CPU Usage Distribution and Limits Across Nodes
The graph below represents the average number of OS processes on CPU, normalized to the CPU core count for each of the three nodes on a RAC system. As noted above, when the normalized value per core crosses the value of "1," the host might be oversubscribed on CPU. Nodes 2 and 3 are usually below the value of 1. However, spikes in usage on node 1 might require further investigation. Also, there seems to be an imbalance in CPU usage across nodes:Breakdown of Foreground and Background Sessions on CPU and Wait Components, Expressed as AAS
When investigating a problematic time period, we can quickly get a high-level overview of the relation between CPU and waits experienced by foreground and background sessions:Observing Waits After Applying a Fix to Reduce Them
After applying "a fix" on April 16th, the time spent waiting by foreground sessions decreased substantially. CPU demand also decreased.Comparing the Number of AAS on CPU Normalized to CPU Core Count at the OS and DB Level on a Three-Node RAC DB
The observed DB isn't using all/most of the CPU available on the nodes, and there's "something else" using it at the OS level. That's visible on the graph for node 1, between May 6th at 7-9 PM, where CPU usage at the OS level increased, but that was not the case for DB sessions. Additionally, because we have the normalized per CPU core value displayed, we can see that node 1 crosses the value of 1 quite often.Logons per Second and Number of Logged-in Sessions per Node
RAC nodes 1 and 2 already have a relatively high number of Logons per second at ~5, whereas node 3 has this even higher at ~23. Additionally, there's a large imbalance in the number of established sessions on node 3 compared to nodes 1 and 2. Because each node has 8 physical cores (not visible from the below graphs), the ~2500 established sessions represent a potential risk should too many of them try to become active at the same time. Overall it seems a connection pooling review is in place for this system. A final example from a different server, but still related to connection management. Detecting a large drop in the number of established sessions and correlating with the number of logins per second:7. Other Mining Tools
Some time ago, Maris Elsins published a post describing a set of handy scripts to mine the AWR repository. Make sure to check it out! To conclude, here's a list of some free mining utilities. These are mostly created for AWR, but some are for Statspack. Some of them parse a pre-created set of AWR/Statspack reports. Others connect directly to the database and extract/analyze data from there. The script presented in this post might not offer the same functionality as those utilities. However, for some of my use-cases, it complemented them by providing a customized set of pre-calculated workload related figures.- https://github.com/LucaCanali/PerfSheet4
- https://github.com/sqldb360/sqldb360
- https://flashdba.com/database/useful-scripts/awr-parser/
- https://github.com/sfurlong/visual-awr
- https://github.com/ora600pl/statspack_scripts
8. Display performance metrics at SQL Level
In the
next post, I'll present the
statspack_top_sqls.sql script which provides a more detailed breakdown of SQL performance metrics for a given time period by querying the Statspack repository.
Share this
- Technical Track (969)
- Oracle (400)
- MySQL (137)
- Cloud (131)
- Open Source (90)
- Google Cloud (83)
- DBA Lounge (76)
- Microsoft SQL Server (76)
- Technical Blog (74)
- Big Data (52)
- AWS (49)
- Google Cloud Platform (47)
- Cassandra (44)
- DevOps (41)
- Azure (38)
- Pythian (33)
- Linux (30)
- Database (26)
- Podcasts (25)
- Site Reliability Engineering (25)
- Performance (24)
- SQL Server (24)
- Microsoft Azure (23)
- Oracle E-Business Suite (23)
- PostgreSQL (23)
- Oracle Database (22)
- Docker (21)
- Group Blog Posts (20)
- Security (20)
- DBA (19)
- Log Buffer (19)
- SQL (19)
- Exadata (18)
- Mongodb (18)
- Oracle Cloud Infrastructure (OCI) (18)
- Oracle Exadata (18)
- Automation (17)
- Hadoop (16)
- Oracleebs (16)
- Amazon RDS (15)
- Ansible (15)
- Ebs (15)
- Snowflake (15)
- ASM (13)
- BigQuery (13)
- Patching (13)
- RDS (13)
- Replication (13)
- Data (12)
- GenAI (12)
- Kubernetes (12)
- Oracle 12C (12)
- Advanced Analytics (11)
- Backup (11)
- LLM (11)
- Machine Learning (11)
- OCI (11)
- Rman (11)
- Cloud Migration (10)
- Datascape Podcast (10)
- Monitoring (10)
- R12 (10)
- 12C (9)
- AI (9)
- Apache Cassandra (9)
- Data Guard (9)
- Infrastructure (9)
- Oracle 19C (9)
- Oracle Applications (9)
- Python (9)
- Series (9)
- AWR (8)
- Amazon Web Services (AWS) (8)
- Articles (8)
- High Availability (8)
- Oracle EBS (8)
- Percona (8)
- Powershell (8)
- Recovery (8)
- Weblogic (8)
- Apache Beam (7)
- Backups (7)
- Data Governance (7)
- Goldengate (7)
- Innodb (7)
- Migration (7)
- Myrocks (7)
- OEM (7)
- Oracle Enterprise Manager (OEM) (7)
- Performance Tuning (7)
- Authentication (6)
- ChatGPT-4 (6)
- Data Enablement (6)
- Database Performance (6)
- E-Business Suite (6)
- Fmw (6)
- Grafana (6)
- Oracle Enterprise Manager (6)
- Orchestrator (6)
- Postgres (6)
- Rac (6)
- Renew Refresh Republish (6)
- RocksDB (6)
- Serverless (6)
- Upgrade (6)
- 19C (5)
- Azure Data Factory (5)
- Azure Synapse Analytics (5)
- Cpu (5)
- Data Visualization (5)
- Disaster Recovery (5)
- Error (5)
- Generative AI (5)
- Google BigQuery (5)
- Indexes (5)
- Love Letters To Data (5)
- Mariadb (5)
- Microsoft (5)
- Proxysql (5)
- Scala (5)
- Sql Server Administration (5)
- VMware (5)
- Windows (5)
- Xtrabackup (5)
- Airflow (4)
- Analytics (4)
- Apex (4)
- Best Practices (4)
- Centrally Managed Users (4)
- Cli (4)
- Cloud FinOps (4)
- Cloud Spanner (4)
- Cockroachdb (4)
- Configuration Management (4)
- Container (4)
- Data Management (4)
- Data Pipeline (4)
- Data Security (4)
- Data Strategy (4)
- Database Administrator (4)
- Database Management (4)
- Database Migration (4)
- Dataflow (4)
- Dbsat (4)
- Elasticsearch (4)
- Fahd Mirza (4)
- Fusion Middleware (4)
- Google (4)
- Io (4)
- Java (4)
- Kafka (4)
- Middleware (4)
- Mysql 8 (4)
- Network (4)
- Ocidtab (4)
- Opatch (4)
- Oracle Autonomous Database (Adb) (4)
- Oracle Cloud (4)
- Pitr (4)
- Post-Mortem Analysis (4)
- Prometheus (4)
- Redhat (4)
- September 9Th 2015 (4)
- Sql2016 (4)
- Ssl (4)
- Terraform (4)
- Workflow (4)
- 2Fa (3)
- Alwayson (3)
- Amazon Relational Database Service (Rds) (3)
- Apache Kafka (3)
- Apexexport (3)
- Aurora (3)
- Azure Sql Db (3)
- Cdb (3)
- ChatGPT (3)
- Cloud Armor (3)
- Cloud Database (3)
- Cloud Security (3)
- Cluster (3)
- Consul (3)
- Cosmos Db (3)
- Cost Management (3)
- Covid19 (3)
- Crontab (3)
- Data Analytics (3)
- Data Integration (3)
- Database 12C (3)
- Database Monitoring (3)
- Database Troubleshooting (3)
- Database Upgrade (3)
- Databases (3)
- Dataops (3)
- Dbt (3)
- Digital Transformation (3)
- ERP (3)
- Google Chrome (3)
- Google Cloud Sql (3)
- Graphite (3)
- Haproxy (3)
- Heterogeneous Database Migration (3)
- Hugepages (3)
- Inside Pythian (3)
- Installation (3)
- Json (3)
- Keras (3)
- Ldap (3)
- Liquibase (3)
- Love Letter (3)
- Lua (3)
- Mfa (3)
- Multitenant (3)
- Mysql 5.7 (3)
- Mysql Configuration (3)
- Nginx (3)
- Nodetool (3)
- Non-Tech Articles (3)
- Oem 13C (3)
- Oms (3)
- Oracle 18C (3)
- Oracle Data Guard (3)
- Oracle Live Sql (3)
- Oracle Rac (3)
- Patch (3)
- Perl (3)
- Pmm (3)
- Pt-Online-Schema-Change (3)
- Rdbms (3)
- Recommended (3)
- Remote Teams (3)
- Reporting (3)
- Reverse Proxy (3)
- S3 (3)
- Spark (3)
- Sql On The Edge (3)
- Sql Server Configuration (3)
- Sql Server On Linux (3)
- Ssis (3)
- Ssis Catalog (3)
- Stefan Knecht (3)
- Striim (3)
- Sysadmin (3)
- System Versioned (3)
- Systemd (3)
- Temporal Tables (3)
- Tensorflow (3)
- Tools (3)
- Tuning (3)
- Vasu Balla (3)
- Vault (3)
- Vulnerability (3)
- Waf (3)
- 18C (2)
- Adf (2)
- Adop (2)
- Agent (2)
- Agile (2)
- Amazon Data Migration Service (2)
- Amazon Ec2 (2)
- Amazon S3 (2)
- Apache Flink (2)
- Apple (2)
- Apps (2)
- Ashdump (2)
- Atp (2)
- Audit (2)
- Automatic Backups (2)
- Autonomous (2)
- Autoupgrade (2)
- Awr Data Mining (2)
- Azure Sql (2)
- Azure Sql Data Sync (2)
- Bash (2)
- Business (2)
- Business Intelligence (2)
- Caching (2)
- Cassandra Nodetool (2)
- Cdap (2)
- Certification (2)
- Cloning (2)
- Cloud Cost Optimization (2)
- Cloud Data Fusion (2)
- Cloud Hosting (2)
- Cloud Infrastructure (2)
- Cloud Shell (2)
- Cloud Sql (2)
- Cloudscape (2)
- Cluster Level Consistency (2)
- Conferences (2)
- Consul-Template (2)
- Containerization (2)
- Containers (2)
- Cosmosdb (2)
- Costs (2)
- Cql (2)
- Cqlsh (2)
- Cyber Security (2)
- Data Discovery (2)
- Data Migration (2)
- Data Quality (2)
- Data Streaming (2)
- Data Warehouse (2)
- Database Consulting (2)
- Database Migrations (2)
- Dataguard (2)
- Datapump (2)
- Ddl (2)
- Debezium (2)
- Dictionary Views (2)
- Dms (2)
- Docker-Composer (2)
- Dr (2)
- Duplicate (2)
- Ecc (2)
- Elastic (2)
- Elastic Stack (2)
- Em12C (2)
- Encryption (2)
- Enterprise Data Platform (EDP) (2)
- Enterprise Manager (2)
- Etl (2)
- Events (2)
- Exachk (2)
- Filter Driver (2)
- Flume (2)
- Full Text Search (2)
- Galera (2)
- Gemini (2)
- General Purpose Ssd (2)
- Gh-Ost (2)
- Gke (2)
- Google Workspace (2)
- Hanganalyze (2)
- Hdfs (2)
- Health Check (2)
- Historical Trends (2)
- Incremental (2)
- Infiniband (2)
- Infrastructure As Code (2)
- Innodb Cluster (2)
- Innodb File Structure (2)
- Innodb Group Replication (2)
- Install (2)
- Internals (2)
- Java Web Start (2)
- Kibana (2)
- Log (2)
- Log4J (2)
- Logs (2)
- Memory (2)
- Merge Replication (2)
- Metrics (2)
- Mutex (2)
- MySQLShell (2)
- NLP (2)
- Neo4J (2)
- Node.Js (2)
- Nosql (2)
- November 11Th 2015 (2)
- Ntp (2)
- Oci Iam (2)
- Oem12C (2)
- Omspatcher (2)
- Opatchauto (2)
- Open Source Database (2)
- Operational Excellence (2)
- Oracle 11G (2)
- Oracle Datase (2)
- Oracle Extended Manager (Oem) (2)
- Oracle Flashback (2)
- Oracle Forms (2)
- Oracle Installation (2)
- Oracle Io Testing (2)
- Pdb (2)
- Podcast (2)
- Puppet (2)
- Pythian Europe (2)
- R12.2 (2)
- Redshift (2)
- Remote DBA (2)
- Remote Sre (2)
- SAP (2)
- SAP HANA Cloud (2)
- Sap Migration (2)
- Scale (2)
- Schema (2)
- September 30Th 2015 (2)
- September 3Rd 2015 (2)
- Shell (2)
- Simon Pane (2)
- Single Sign-On (2)
- Sql Server On Gke (2)
- Sqlplus (2)
- Sre (2)
- Ssis Catalog Error (2)
- Ssisdb (2)
- Standby (2)
- Statspack Mining (2)
- Systemstate Dump (2)
- Tablespace (2)
- Technical Training (2)
- Tempdb (2)
- Tfa (2)
- Throughput (2)
- Tls (2)
- Tombstones (2)
- Transactional Replication (2)
- User Groups (2)
- Vagrant (2)
- Variables (2)
- Virtual Machine (2)
- Virtual Machines (2)
- Virtualbox (2)
- Web Application Firewall (2)
- Webinars (2)
- X5 (2)
- scalability (2)
- //Build2019 (1)
- 11G (1)
- 12.1 (1)
- 12Cr1 (1)
- 12Cr2 (1)
- 18C Grid Installation (1)
- 2022 (1)
- 2022 Snowflake Summit (1)
- AI Platform (1)
- AI Summit (1)
- Actifio (1)
- Active Directory (1)
- Adaptive Hash Index (1)
- Adf Custom Email (1)
- Adobe Flash (1)
- Adrci (1)
- Advanced Data Services (1)
- Afd (1)
- After Logon Trigger (1)
- Ahf (1)
- Aix (1)
- Akka (1)
- Alloydb (1)
- Alter Table (1)
- Always On (1)
- Always On Listener (1)
- Alwayson With Gke (1)
- Amazon (1)
- Amazon Athena (1)
- Amazon Aurora Backtrack (1)
- Amazon Efs (1)
- Amazon Redshift (1)
- Amazon Sagemaker (1)
- Amazon Vpc Flow Logs (1)
- Amdu (1)
- Analysis (1)
- Analytical Models (1)
- Analyzing Bigquery Via Sheets (1)
- Anisble (1)
- Annual Mysql Community Dinner (1)
- Anthos (1)
- Apache (1)
- Apache Nifi (1)
- Apache Spark (1)
- Application Migration (1)
- Architect (1)
- Architecture (1)
- Ash (1)
- Asmlib (1)
- Atlas CLI (1)
- Audit In Postgres (1)
- Audit In Postgresql (1)
- Auto Failover (1)
- Auto Increment (1)
- Auto Index (1)
- Autoconfig (1)
- Automated Reports (1)
- Automl (1)
- Autostart (1)
- Awr Mining (1)
- Aws Glue (1)
- Aws Lake Formation (1)
- Aws Lambda (1)
- Azure Analysis Services (1)
- Azure Blob Storage (1)
- Azure Cognitive Search (1)
- Azure Data (1)
- Azure Data Lake (1)
- Azure Data Lake Analytics (1)
- Azure Data Lake Store (1)
- Azure Data Migration Service (1)
- Azure Dma (1)
- Azure Dms (1)
- Azure Document Intelligence (1)
- Azure Integration Runtime (1)
- Azure OpenAI (1)
- Azure Sql Data Warehouse (1)
- Azure Sql Dw (1)
- Azure Sql Managed Instance (1)
- Azure Vm (1)
- Backup For Sql Server (1)
- Bacpac (1)
- Bag (1)
- Bare Metal Solution (1)
- Batch Operation (1)
- Batches In Cassandra (1)
- Beats (1)
- Best Practice (1)
- Bi Publisher (1)
- Binary Logging (1)
- Bind Variables (1)
- Bitnami (1)
- Blob Storage Endpoint (1)
- Blockchain (1)
- Browsers (1)
- Btp Architecture (1)
- Btp Components (1)
- Buffer Pool (1)
- Bug (1)
- Bugs (1)
- Build 2019 Updates (1)
- Build Cassandra (1)
- Bundle Patch (1)
- Bushy Join (1)
- Business Continuity (1)
- Business Insights (1)
- Business Process Modelling (1)
- Business Reputation (1)
- CAPEX (1)
- Capacity Planning (1)
- Career (1)
- Career Development (1)
- Cassandra-Cli (1)
- Catcon.Pm (1)
- Catctl.Pl (1)
- Catupgrd.Sql (1)
- Cbo (1)
- Cdb Duplication (1)
- Certificate (1)
- Certificate Management (1)
- Chaos Engineering (1)
- Cheatsheet (1)
- Checkactivefilesandexecutables (1)
- Chmod (1)
- Chown (1)
- Chrome Enterprise (1)
- Chrome Security (1)
- Cl-Series (1)
- Cleanup (1)
- Cloud Browser (1)
- Cloud Build (1)
- Cloud Consulting (1)
- Cloud Data Warehouse (1)
- Cloud Database Management (1)
- Cloud Dataproc (1)
- Cloud Foundry (1)
- Cloud Manager (1)
- Cloud Migations (1)
- Cloud Networking (1)
- Cloud SQL Replica (1)
- Cloud Scheduler (1)
- Cloud Services (1)
- Cloud Strategies (1)
- Cloudformation (1)
- Cluster Resource (1)
- Cmo (1)
- Cockroach Db (1)
- Coding Benchmarks (1)
- Colab (1)
- Collectd (1)
- Columnar (1)
- Communication Plans (1)
- Community (1)
- Compact Storage (1)
- Compaction (1)
- Compliance (1)
- Compression (1)
- Compute Instances (1)
- Compute Node (1)
- Concurrent Manager (1)
- Concurrent Processing (1)
- Configuration (1)
- Consistency Level (1)
- Consolidation (1)
- Conversational AI (1)
- Covid-19 (1)
- Cpu Patching (1)
- Cqlsstablewriter (1)
- Crash (1)
- Create Catalog Error (1)
- Create_File_Dest (1)
- Credentials (1)
- Cross Platform (1)
- CrowdStrike (1)
- Crsctl (1)
- Custom Instance Images (1)
- Cve-2022-21500 (1)
- Cvu (1)
- Cypher Queries (1)
- DBSAT 3 (1)
- Dacpac (1)
- Dag (1)
- Data Analysis (1)
- Data Analytics Platform (1)
- Data Box (1)
- Data Classification (1)
- Data Cleansing (1)
- Data Encryption (1)
- Data Engineering (1)
- Data Estate (1)
- Data Flow Management (1)
- Data Insights (1)
- Data Integrity (1)
- Data Lake (1)
- Data Leader (1)
- Data Lifecycle Management (1)
- Data Lineage (1)
- Data Masking (1)
- Data Mesh (1)
- Data Migration Assistant (1)
- Data Migration Service (1)
- Data Mining (1)
- Data Modeling (1)
- Data Monetization (1)
- Data Policy (1)
- Data Profiling (1)
- Data Protection (1)
- Data Retention (1)
- Data Safe (1)
- Data Sheets (1)
- Data Summit (1)
- Data Vault (1)
- Data Warehouse Modernization (1)
- Database Auditing (1)
- Database Consultant (1)
- Database Link (1)
- Database Modernization (1)
- Database Provisioning (1)
- Database Provisioning Failed (1)
- Database Replication (1)
- Database Scaling (1)
- Database Schemas (1)
- Database Security (1)
- Databricks (1)
- Datadog (1)
- Datafile (1)
- Datapatch (1)
- Dataprivacy (1)
- Datascape 59 (1)
- Datasets (1)
- Datastax Cassandra (1)
- Datastax Opscenter (1)
- Datasync Error (1)
- Db_Create_File_Dest (1)
- Dbaas (1)
- Dbatools (1)
- Dbcc Checkident (1)
- Dbms_Cloud (1)
- Dbms_File_Transfer (1)
- Dbms_Metadata (1)
- Dbms_Service (1)
- Dbms_Stats (1)
- Dbupgrade (1)
- Deep Learning (1)
- Delivery (1)
- Devd (1)
- Dgbroker (1)
- Dialogflow (1)
- Dict0Dict (1)
- Did You Know (1)
- Direct Path Read Temp (1)
- Disk Groups (1)
- Disk Management (1)
- Diskgroup (1)
- Dispatchers (1)
- Distributed Ag (1)
- Distribution Agent (1)
- Documentation (1)
- Download (1)
- Dp Agent (1)
- Duet AI (1)
- Duplication (1)
- Dynamic Sampling (1)
- Dynamic Tasks (1)
- E-Business Suite Cpu Patching (1)
- E-Business Suite Patching (1)
- Ebs Sso (1)
- Ec2 (1)
- Edb Postgresql Advanced Server (1)
- Edb Postgresql Password Verify Function (1)
- Editions (1)
- Edp (1)
- El Carro (1)
- Elassandra (1)
- Elk Stack (1)
- Em13Cr2 (1)
- Emcli (1)
- End of Life (1)
- Engineering (1)
- Enqueue (1)
- Enterprise (1)
- Enterprise Architecture (1)
- Enterprise Command Centers (1)
- Enterprise Manager Command Line Interface (Em Cli (1)
- Enterprise Plus (1)
- Episode 58 (1)
- Error Handling (1)
- Exacc (1)
- Exacheck (1)
- Exacs (1)
- Exadata Asr (1)
- Execution (1)
- Executive Sponsor (1)
- Expenditure (1)
- Export Sccm Collection To Csv (1)
- External Persistent Volumes (1)
- Fail (1)
- Failed Upgrade (1)
- Failover In Postgresql (1)
- Fall 2021 (1)
- Fast Recovery Area (1)
- FinOps Strategy (1)
- Flash Recovery Area (1)
- Flashback (1)
- Fnd (1)
- Fndsm (1)
- Force_Matching_Signature (1)
- Fra Full (1)
- Framework (1)
- Freebsd (1)
- Fsync (1)
- Function-Based Index (1)
- GCVE Architecture (1)
- GPQA (1)
- Gaming (1)
- Garbagecollect (1)
- Gcp Compute (1)
- Gcp-Spanner (1)
- Geography (1)
- Geth (1)
- Getmospatch (1)
- Git (1)
- Global Analytics (1)
- Gmail (1)
- Gmail Security (1)
- Google Analytics (1)
- Google Cloud Architecture Framework (1)
- Google Cloud Data Services (1)
- Google Cloud Partner (1)
- Google Cloud Spanner (1)
- Google Cloud VMware Engine (1)
- Google Compute Engine (1)
- Google Dataflow (1)
- Google Datalab (1)
- Google Grab And Go (1)
- Google Sheets (1)
- Gp2 (1)
- Graph Algorithms (1)
- Graph Databases (1)
- Graph Inferences (1)
- Graph Theory (1)
- GraphQL (1)
- Graphical User Interface (Gui) (1)
- Grid (1)
- Grid Infrastructure (1)
- Griddisk Resize (1)
- Grp (1)
- Guaranteed Restore Point (1)
- Guid Mismatch (1)
- HR Technology (1)
- HRM (1)
- Ha (1)
- Hang (1)
- Hashicorp (1)
- Hbase (1)
- Hcc (1)
- Hdinsight (1)
- Healthcheck (1)
- Hemantgiri S. Goswami (1)
- Hortonworks (1)
- How To Install Ssrs (1)
- Hr (1)
- Httpchk (1)
- Https (1)
- Huge Pages (1)
- HumanEval (1)
- Hung Database (1)
- Hybrid Columnar Compression (1)
- Hyper-V (1)
- Hyperscale (1)
- Hypothesis Driven Development (1)
- Ibm (1)
- Identity Management (1)
- Idm (1)
- Ilom (1)
- Imageinfo (1)
- Impdp (1)
- In Place Upgrade (1)
- Incident Response (1)
- Indempotent (1)
- Indexing In Mongodb (1)
- Influxdb (1)
- Information (1)
- Infrastructure As A Code (1)
- Injection (1)
- Innobackupex (1)
- Innodb Concurrency (1)
- Innodb Flush Method (1)
- Insights (1)
- Installing (1)
- Instance Cloning (1)
- Integration Services (1)
- Integrations (1)
- Interactive_Timeout (1)
- Interval Partitioning (1)
- Invisible Indexes (1)
- Io1 (1)
- IoT (1)
- Iops (1)
- Iphone (1)
- Ipv6 (1)
- Iscsi (1)
- Iscsi-Initiator-Utils (1)
- Iscsiadm (1)
- Issues (1)
- It Industry (1)
- It Teams (1)
- JMX Metrics (1)
- Jared Still (1)
- Javascript (1)
- Jdbc (1)
- Jinja2 (1)
- Jmx (1)
- Jmx Monitoring (1)
- Jvm (1)
- Jython (1)
- K8S (1)
- Kernel (1)
- Key Btp Components (1)
- Kfed (1)
- Kill Sessions (1)
- Knapsack (1)
- Kubeflow (1)
- LMSYS Chatbot Arena (1)
- Large Pages (1)
- Latency (1)
- Latest News (1)
- Leadership (1)
- Leap Second (1)
- Limits (1)
- Line 1 (1)
- Linkcolumn (1)
- Linux Host Monitoring (1)
- Linux Storage Appliance (1)
- Listener (1)
- Loadavg (1)
- Lock_Sga (1)
- Locks (1)
- Log File Switch (Archiving Needed) (1)
- Logfile (1)
- Looker (1)
- Lvm (1)
- MMLU (1)
- Managed Instance (1)
- Managed Services (1)
- Management (1)
- Management Servers (1)
- Marketing (1)
- Marketing Analytics (1)
- Martech (1)
- Masking (1)
- Megha Bedi (1)
- Metadata (1)
- Method-R Workbench (1)
- Metric (1)
- Metric Extensions (1)
- Michelle Gutzait (1)
- Microservices (1)
- Microsoft Azure Sql Database (1)
- Microsoft Build (1)
- Microsoft Build 2019 (1)
- Microsoft Ignite (1)
- Microsoft Inspire 2019 (1)
- Migrate (1)
- Migrating Ssis Catalog (1)
- Migrating To Azure Sql (1)
- Migration Checklist (1)
- Mirroring (1)
- Mismatch (1)
- Model Governance (1)
- Monetization (1)
- MongoDB Atlas (1)
- MongoDB Compass (1)
- Ms Excel (1)
- Msdtc (1)
- Msdtc In Always On (1)
- Msdtc In Cluster (1)
- Multi-IP (1)
- Multicast (1)
- Multipath (1)
- My.Cnf (1)
- MySQL Shell Logical Backup (1)
- MySQLDump (1)
- Mysql Enterprise (1)
- Mysql Plugin For Oracle Enterprise Manager (1)
- Mysql Replication Filters (1)
- Mysql Server (1)
- Mysql-Python (1)
- Nagios (1)
- Ndb (1)
- Net_Read_Timeout (1)
- Net_Write_Timeout (1)
- Netcat (1)
- Newsroom (1)
- Nfs (1)
- Nifi (1)
- Node (1)
- November 10Th 2015 (1)
- November 6Th 2015 (1)
- Null Columns (1)
- Nullipotent (1)
- OPEX (1)
- ORAPKI (1)
- O_Direct (1)
- Oacore (1)
- October 21St 2015 (1)
- October 6Th 2015 (1)
- October 8Th 2015 (1)
- Oda (1)
- Odbcs (1)
- Odbs (1)
- Odi (1)
- Oel (1)
- Ohs (1)
- Olvm (1)
- On-Prem To Azure Sql (1)
- On-Premises (1)
- Onclick (1)
- Open.Canada.Ca (1)
- Openstack (1)
- Operating System Monitoring (1)
- Oplog (1)
- Opsworks (1)
- Optimization (1)
- Optimizer (1)
- Ora-01852 (1)
- Ora-7445 (1)
- Oracle 19 (1)
- Oracle 20C (1)
- Oracle Cursor (1)
- Oracle Database 12.2 (1)
- Oracle Database Appliance (1)
- Oracle Database Se2 (1)
- Oracle Database Standard Edition 2 (1)
- Oracle Database Upgrade (1)
- Oracle Database@Google Cloud (1)
- Oracle Exadata Smart Scan (1)
- Oracle Licensing (1)
- Oracle Linux Virtualization Manager (1)
- Oracle Oda (1)
- Oracle Openworld (1)
- Oracle Parallelism (1)
- Oracle Rdbms (1)
- Oracle Real Application Clusters (1)
- Oracle Reports (1)
- Oracle Security (1)
- Oracle Wallet (1)
- Orasrp (1)
- Organizational Change (1)
- Orion (1)
- Os (1)
- Osbws_Install.Jar (1)
- Oui Gui (1)
- Output (1)
- Owox (1)
- Paas (1)
- Package Deployment Wizard Error (1)
- Parallel Execution (1)
- Parallel Query (1)
- Parallel Query Downgrade (1)
- Partitioning (1)
- Partitions (1)
- Password (1)
- Password Change (1)
- Password Recovery (1)
- Password Verify Function In Postgresql (1)
- Patches (1)
- Patchmgr (1)
- Pdb Duplication (1)
- Penalty (1)
- Perfomrance (1)
- Performance Schema (1)
- Pg 15 (1)
- Pg_Rewind (1)
- Pga (1)
- Pipeline Debugging (1)
- Pivot (1)
- Planning (1)
- Plsql (1)
- Policy (1)
- Polybase (1)
- Post-Acquisition (1)
- Post-Covid It (1)
- Postgresql Complex Password (1)
- Postgresql With Repmgr Integration (1)
- Power Bi (1)
- Pq (1)
- Preliminar Connection (1)
- Preliminary Connection (1)
- Privatecloud (1)
- Process Mining (1)
- Production (1)
- Productivity (1)
- Profile In Edb Postgresql (1)
- Programming (1)
- Prompt Engineering (1)
- Provisioned Iops (1)
- Provisiones Iops (1)
- Proxy Monitoring (1)
- Psu (1)
- Public Cloud (1)
- Pubsub (1)
- Purge (1)
- Purge Thread (1)
- Pythian Blackbird Acquisition (1)
- Pythian Goodies (1)
- Pythian News (1)
- Python Pandas (1)
- Query Performance (1)
- Quicksight (1)
- Quota Limits (1)
- R12 R12.2 Cp Concurrent Processing Abort (1)
- R12.1.3 (1)
- REF! (1)
- Ram Cache (1)
- Rbac (1)
- Rdb (1)
- Rds_File_Util (1)
- Read Free Replication (1)
- Read Latency (1)
- Read Only (1)
- Read Replica (1)
- Reboot (1)
- Recruiting (1)
- Redo Size (1)
- Relational Database Management System (1)
- Release (1)
- Release Automation (1)
- Repair (1)
- Replication Compatibility (1)
- Replication Error (1)
- Repmgr (1)
- Repmgrd (1)
- Reporting Services 2019 (1)
- Resiliency Planning (1)
- Resource Manager (1)
- Resources (1)
- Restore (1)
- Restore Point (1)
- Retail (1)
- Rhel (1)
- Risk (1)
- Risk Management (1)
- Rocksrb (1)
- Role In Postgresql (1)
- Rollback (1)
- Rolling Patch (1)
- Row0Purge (1)
- Rpm (1)
- Rule "Existing Clustered Or Clustered-Prepared In (1)
- Running Discovery On Remote Machine (1)
- SQL Optimization (1)
- SQL Tracing (1)
- SSRS Administration (1)
- SaaS (1)
- Sap Assessment (1)
- Sap Assessment Report (1)
- Sap Backup Restore (1)
- Sap Btp Architecture (1)
- Sap Btp Benefits (1)
- Sap Btp Model (1)
- Sap Btp Services (1)
- Sap Homogenous System Copy Method (1)
- Sap Landscape Copy (1)
- Sap Migration Assessment (1)
- Sap On Mssql (1)
- Sap System Copy (1)
- Sar (1)
- Scaling Ir (1)
- Sccm (1)
- Sccm Powershell (1)
- Scheduler (1)
- Scheduler_Job (1)
- Schedulers (1)
- Scheduling (1)
- Scott Mccormick (1)
- Scripts (1)
- Sdp (1)
- Secrets (1)
- Securing Sql Server (1)
- Security Compliance (1)
- Sed (Stream Editor) (1)
- Self Hosted Ir (1)
- Semaphore (1)
- Seps (1)
- September 11Th 2015 (1)
- Serverless Computing (1)
- Serverless Framework (1)
- Service Broker (1)
- Service Bus (1)
- Shared Connections (1)
- Shared Storage (1)
- Shellshock (1)
- Signals (1)
- Silent (1)
- Slave (1)
- Slob (1)
- Smart Scan (1)
- Smtp (1)
- Snapshot (1)
- Snowday Fall 2021 (1)
- Socat (1)
- Software Development (1)
- Software Engineering (1)
- Solutions Architecture (1)
- Spanner-Backups (1)
- Sphinx (1)
- Split Brain In Postgresql (1)
- Spm (1)
- Sql Agent (1)
- Sql Backup To Url Error (1)
- Sql Cluster Installer Hang (1)
- Sql Database (1)
- Sql Developer (1)
- Sql On Linux (1)
- Sql Server 2014 (1)
- Sql Server 2016 (1)
- Sql Server Agent On Linux (1)
- Sql Server Backups (1)
- Sql Server Denali Is Required To Install Integrat (1)
- Sql Server Health Check (1)
- Sql Server Troubleshooting On Linux (1)
- Sql Server Version (1)
- Sql Setup (1)
- Sql Vm (1)
- Sql2K19Ongke (1)
- Sqldatabase Serverless (1)
- Ssh User Equivalence (1)
- Ssis Denali Error (1)
- Ssis Install Error E Xisting Clustered Or Cluster (1)
- Ssis Package Deployment Error (1)
- Ssisdb Master Key (1)
- Ssisdb Restore Error (1)
- Sso (1)
- Ssrs 2019 (1)
- Sstable2Json (1)
- Sstableloader (1)
- Sstablesimpleunsortedwriter (1)
- Stack Dump (1)
- Standard Edition (1)
- Startup Process (1)
- Statistics (1)
- Statspack (1)
- Statspack Data Mining (1)
- Statspack Erroneously Reporting (1)
- Statspack Issues (1)
- Storage (1)
- Stored Procedure (1)
- Strategies (1)
- Streaming (1)
- Sunos (1)
- Swap (1)
- Swapping (1)
- Switch (1)
- Syft (1)
- Synapse (1)
- Sync Failed There Is Not Enough Space On The Disk (1)
- Sys Schema (1)
- System Function (1)
- Systems Administration (1)
- T-Sql (1)
- Table Optimization (1)
- Tablespace Growth (1)
- Tablespaces (1)
- Tags (1)
- Tar (1)
- Tde (1)
- Team Management (1)
- Tech Debt (1)
- Technology (1)
- Telegraf (1)
- Tempdb Encryption (1)
- Templates (1)
- Temporary Tablespace (1)
- Tenserflow (1)
- Teradata (1)
- Testing New Cassandra Builds (1)
- There Is Not Enough Space On The Disk (1)
- Thick Data (1)
- Third-Party Data (1)
- Thrift (1)
- Thrift Data (1)
- Tidb (1)
- Time Series (1)
- Time-Drift (1)
- Tkprof (1)
- Tmux (1)
- Tns (1)
- Trace (1)
- Tracefile (1)
- Training (1)
- Transaction Log (1)
- Transactions (1)
- Transformation Navigator (1)
- Transparent Data Encryption (1)
- Trigger (1)
- Triggers On Memory-Optimized Tables Must Use With (1)
- Troubleshooting (1)
- Tungsten (1)
- Tvdxtat (1)
- Twitter (1)
- U-Sql (1)
- UNDO Tablespace (1)
- Upgrade Issues (1)
- Uptime (1)
- Uptrade (1)
- Url Backup Error (1)
- Usability (1)
- Use Cases (1)
- User (1)
- User Defined Compactions (1)
- Utilization (1)
- Utl_Smtp (1)
- VDI Jump Host (1)
- Validate Structure (1)
- Validate_Credentials (1)
- Value (1)
- Velocity (1)
- Vertex AI (1)
- Vertica (1)
- Vertical Slicing (1)
- Videos (1)
- Virtual Private Cloud (1)
- Virtualization (1)
- Vision (1)
- Vpn (1)
- Wait_Timeout (1)
- Wallet (1)
- Webhook (1)
- Weblogic Connection Filters (1)
- Webscale Database (1)
- Windows 10 (1)
- Windows Powershell (1)
- WiredTiger (1)
- With Native_Compilation (1)
- Word (1)
- Workshop (1)
- Workspace Security (1)
- Xbstream (1)
- Xml Publisher (1)
- Zabbix (1)
- dbms_Monitor (1)
- postgresql 16 (1)
- sqltrace (1)
- tracing (1)
- vSphere (1)
- xml (1)
- October 2024 (2)
- September 2024 (7)
- August 2024 (4)
- July 2024 (2)
- June 2024 (6)
- May 2024 (3)
- April 2024 (2)
- February 2024 (2)
- January 2024 (11)
- December 2023 (10)
- November 2023 (11)
- October 2023 (10)
- September 2023 (8)
- August 2023 (7)
- July 2023 (2)
- June 2023 (13)
- May 2023 (4)
- April 2023 (6)
- March 2023 (10)
- February 2023 (6)
- January 2023 (5)
- December 2022 (10)
- November 2022 (10)
- October 2022 (10)
- September 2022 (13)
- August 2022 (16)
- July 2022 (12)
- June 2022 (13)
- May 2022 (11)
- April 2022 (4)
- March 2022 (5)
- February 2022 (4)
- January 2022 (14)
- December 2021 (16)
- November 2021 (11)
- October 2021 (7)
- September 2021 (11)
- August 2021 (6)
- July 2021 (9)
- June 2021 (4)
- May 2021 (8)
- April 2021 (16)
- March 2021 (16)
- February 2021 (6)
- January 2021 (12)
- December 2020 (12)
- November 2020 (17)
- October 2020 (11)
- September 2020 (10)
- August 2020 (11)
- July 2020 (13)
- June 2020 (6)
- May 2020 (9)
- April 2020 (18)
- March 2020 (21)
- February 2020 (13)
- January 2020 (15)
- December 2019 (10)
- November 2019 (11)
- October 2019 (12)
- September 2019 (16)
- August 2019 (15)
- July 2019 (10)
- June 2019 (16)
- May 2019 (20)
- April 2019 (21)
- March 2019 (14)
- February 2019 (18)
- January 2019 (18)
- December 2018 (5)
- November 2018 (16)
- October 2018 (12)
- September 2018 (20)
- August 2018 (27)
- July 2018 (31)
- June 2018 (34)
- May 2018 (28)
- April 2018 (27)
- March 2018 (17)
- February 2018 (8)
- January 2018 (20)
- December 2017 (14)
- November 2017 (4)
- October 2017 (1)
- September 2017 (3)
- August 2017 (5)
- July 2017 (4)
- June 2017 (2)
- May 2017 (7)
- April 2017 (7)
- March 2017 (8)
- February 2017 (8)
- January 2017 (5)
- December 2016 (3)
- November 2016 (4)
- October 2016 (8)
- September 2016 (9)
- August 2016 (10)
- July 2016 (9)
- June 2016 (8)
- May 2016 (13)
- April 2016 (16)
- March 2016 (13)
- February 2016 (11)
- January 2016 (6)
- December 2015 (11)
- November 2015 (11)
- October 2015 (5)
- September 2015 (16)
- August 2015 (4)
- July 2015 (1)
- June 2015 (3)
- May 2015 (6)
- April 2015 (5)
- March 2015 (5)
- February 2015 (4)
- January 2015 (3)
- December 2014 (7)
- October 2014 (4)
- September 2014 (6)
- August 2014 (6)
- July 2014 (16)
- June 2014 (7)
- May 2014 (6)
- April 2014 (5)
- March 2014 (4)
- February 2014 (10)
- January 2014 (6)
- December 2013 (8)
- November 2013 (12)
- October 2013 (9)
- September 2013 (6)
- August 2013 (7)
- July 2013 (9)
- June 2013 (7)
- May 2013 (7)
- April 2013 (4)
- March 2013 (7)
- February 2013 (4)
- January 2013 (4)
- December 2012 (6)
- November 2012 (8)
- October 2012 (9)
- September 2012 (3)
- August 2012 (5)
- July 2012 (5)
- June 2012 (7)
- May 2012 (11)
- April 2012 (1)
- March 2012 (8)
- February 2012 (1)
- January 2012 (6)
- December 2011 (8)
- November 2011 (5)
- October 2011 (9)
- September 2011 (6)
- August 2011 (4)
- July 2011 (1)
- June 2011 (1)
- May 2011 (5)
- April 2011 (2)
- February 2011 (2)
- January 2011 (2)
- December 2010 (1)
- November 2010 (7)
- October 2010 (3)
- September 2010 (8)
- August 2010 (2)
- July 2010 (4)
- June 2010 (7)
- May 2010 (2)
- April 2010 (1)
- March 2010 (3)
- February 2010 (3)
- January 2010 (2)
- November 2009 (6)
- October 2009 (6)
- August 2009 (3)
- July 2009 (3)
- June 2009 (3)
- May 2009 (2)
- April 2009 (8)
- March 2009 (6)
- February 2009 (4)
- January 2009 (3)
- November 2008 (3)
- October 2008 (7)
- September 2008 (6)
- August 2008 (9)
- July 2008 (9)
- June 2008 (9)
- May 2008 (9)
- April 2008 (8)
- March 2008 (4)
- February 2008 (3)
- January 2008 (3)
- December 2007 (2)
- November 2007 (7)
- October 2007 (1)
- August 2007 (4)
- July 2007 (3)
- June 2007 (8)
- May 2007 (4)
- April 2007 (2)
- March 2007 (2)
- February 2007 (5)
- January 2007 (8)
- December 2006 (1)
- November 2006 (3)
- October 2006 (4)
- September 2006 (3)
- July 2006 (1)
- May 2006 (2)
- April 2006 (1)
- July 2005 (1)
Comments (1)