Share this
An Initial Test of Google’s AlloyDB Columnar Engine
by Simon Pane on May 30, 2022 12:00:00 AM
Google just recently launched the public preview of their new customized cloud version of PostgreSQL called AlloyDB. This Google Cloud Platform (GCP) managed database service is not the same as their Cloud SQL PostgreSQL service that still exists and is a slightly different offering.
One of the main features of their AlloyDB flavor of PostgreSQL is a new Columnar Engine (CE). This is composed of some dedicated memory for column format data, which Google calls the column store. There’s also a corresponding columnar query planner and execution engine. Having data in memory in columnar format can significantly increase the speed of some analytical queries.
Conceptually, this should be similar to the In-Memory feature of Oracle Database, but with AlloyDB in a 100% PostgreSQL–compatible managed database service.
Although the workloads are usually much more complex and mixed, we decided to do an initial quick test of the potential of this one new feature to show the possibilities for applicable queries. (AlloyDB has other technical differences which are beyond the scope of this article.)
Our test environment uses a mid-sized AlloyDB machine size: 16 vCPUs which comes with 128GB of memory.
PostgreSQL Setup and Parameters
We made minimal changes to the core PostgreSQL parameters (managed as “flags” within the service and can be adjusted through the Web UI or gcloud
API commands) and mostly used the default values for the AlloyDB service. The exception is:
work_mem = 65536 |
We also had the pg_stat_statments
extension enabled. Apart from that, our baseline was with an “out-of-the-box” AlloyDB deployment.
Generating a Baseline
We used the standard PostgreSQL pgbench utility for a quick test and initially populated it so that the pgbench_accounts
table would have 50M rows.
Commands (pgbench and psql) are run from a Google Compute Engine (GCE) virtual machine in the same region as the AlloyDB cluster. Since AlloyDB is fully PostgreSQL-compatible, utility connections (including pgbench and psql) are handled exactly the same way as they would be for any other PostgreSQL cluster. (After the initial AlloyDB deployment and GCP network configuration, deployment steps are outside of the scope of this article).
$ pgbench pgbench_test --initialize --init-steps=dtgv --fillfactor=90 --scale=500 dropping old tables... creating tables... generating data (client-side)... 50000000 of 50000000 tuples (100%) done (elapsed 46.37 s, remaining 0.00 s) vacuuming... done in 49.87 s (drop tables 1.21 s, create tables 0.01 s, client-side generate 48.25 s, vacuum 0.41 s). $ |
Since this initial test is so narrow and limited in scope–and focused on seq scans
of the entire table–there was no need to add the corresponding primary and foreign keys.
We prepared three simple queries designed specifically to perform seq scans
of the entire table:
Query 1: | SELECT * FROM pgbench_accounts WHERE bid = 500 AND abalance > 100; |
Query 2: | SELECT * FROM pgbench_accounts WHERE bid = 500 OR bid = 100; |
Query 3: | SELECT SUM(abalance) FROM pgbench_accounts WHERE bid = 500 OR bid = 100; |
Running these very simple (and similar) queries against the pbench_accounts
table shows:
pgbench_test=> EXPLAIN (ANALYZE,COSTS,SETTINGS,BUFFERS,TIMING,SUMMARY,WAL,VERBOSE) pgbench_test-> SELECT * FROM pgbench_accounts WHERE bid = 500 AND abalance > 100; QUERY PLAN --------------------------------------------------------------------------------------------------------------------------------------------- Gather (cost=1000.00..1222591.12 rows=1 width=97) (actual time=1537.827..1541.348 rows=0 loops=1) Output: aid, bid, abalance, filler Workers Planned: 2 Workers Launched: 2 Buffers: shared hit=909091 -> Parallel Seq Scan on public.pgbench_accounts (cost=0.00..1221591.02 rows=1 width=97) (actual time=1531.381..1531.382 rows=0 loops=3) Output: aid, bid, abalance, filler Filter: ((pgbench_accounts.abalance > 100) AND (pgbench_accounts.bid = 500)) Rows Removed by Filter: 16666667 Buffers: shared hit=909091 Worker 0: actual time=1528.139..1528.140 rows=0 loops=1 Buffers: shared hit=302957 Worker 1: actual time=1528.617..1528.617 rows=0 loops=1 Buffers: shared hit=305201 Settings: effective_cache_size = '52768720kB', work_mem = '64MB' Query Identifier: -2789621609201040747 Planning Time: 0.075 ms Execution Time: 1541.372 ms (18 rows) pgbench_test=> EXPLAIN (ANALYZE,COSTS,SETTINGS,BUFFERS,TIMING,SUMMARY,WAL,VERBOSE) pgbench_test-> SELECT * FROM pgbench_accounts WHERE bid = 500 OR bid = 100; QUERY PLAN ---------------------------------------------------------------------------------------------------------------------------------------------------- Gather (cost=1000.00..1241743.42 rows=191524 width=97) (actual time=332.758..1640.550 rows=200000 loops=1) Output: aid, bid, abalance, filler Workers Planned: 2 Workers Launched: 2 Buffers: shared hit=909091 -> Parallel Seq Scan on public.pgbench_accounts (cost=0.00..1221591.02 rows=79802 width=97) (actual time=325.744..1619.348 rows=66667 loops=3) Output: aid, bid, abalance, filler Filter: ((pgbench_accounts.bid = 500) OR (pgbench_accounts.bid = 100)) Rows Removed by Filter: 16600000 Buffers: shared hit=909091 Worker 0: actual time=322.531..1620.121 rows=89935 loops=1 Buffers: shared hit=302604 Worker 1: actual time=322.158..1621.575 rows=81025 loops=1 Buffers: shared hit=305687 Settings: effective_cache_size = '52768720kB', work_mem = '64MB' Query Identifier: 3730570278250096652 Planning Time: 0.073 ms Execution Time: 1648.524 ms (18 rows) pgbench_test=> EXPLAIN (ANALYZE,COSTS,SETTINGS,BUFFERS,TIMING,SUMMARY,WAL,VERBOSE) pgbench_test-> SELECT SUM(abalance) FROM pgbench_accounts WHERE bid = 500 OR bid = 100; QUERY PLAN --------------------------------------------------------------------------------------------------------------------------------------------------------------- Finalize Aggregate (cost=1222790.74..1222790.75 rows=1 width=8) (actual time=1624.157..1627.709 rows=1 loops=1) Output: sum(abalance) Buffers: shared hit=909091 -> Gather (cost=1222790.53..1222790.74 rows=2 width=8) (actual time=1623.927..1627.700 rows=3 loops=1) Output: (PARTIAL sum(abalance)) Workers Planned: 2 Workers Launched: 2 Buffers: shared hit=909091 -> Partial Aggregate (cost=1221790.53..1221790.54 rows=1 width=8) (actual time=1617.558..1617.559 rows=1 loops=3) Output: PARTIAL sum(abalance) Buffers: shared hit=909091 Worker 0: actual time=1614.305..1614.307 rows=1 loops=1 Buffers: shared hit=303993 Worker 1: actual time=1614.672..1614.674 rows=1 loops=1 Buffers: shared hit=302784 -> Parallel Seq Scan on public.pgbench_accounts (cost=0.00..1221591.02 rows=79802 width=4) (actual time=320.520..1613.159 rows=66667 loops=3) Output: aid, bid, abalance, filler Filter: ((pgbench_accounts.bid = 500) OR (pgbench_accounts.bid = 100)) Rows Removed by Filter: 16600000 Buffers: shared hit=909091 Worker 0: actual time=318.019..1609.445 rows=73930 loops=1 Buffers: shared hit=303993 Worker 1: actual time=317.168..1610.406 rows=64800 loops=1 Buffers: shared hit=302784 Settings: effective_cache_size = '52768720kB', work_mem = '64MB' Query Identifier: -1803082051895113688 Planning Time: 0.087 ms Execution Time: 1627.749 ms (28 rows) pgbench_test=> |
The average execution time of each of those is about 1600ms or 1.6 seconds.
Enabling and Re-testing with the Columnar Engine
Enabling the AlloyDB Columnar Engine (CE) and configuring it so our query can take advantage of it is a multi-step process.
First, we need to adjust the instance so that the new google_columnar_engine.enabled
flag is set to ON
. This can be done either through the GCP Web UI or through a gcloud
command such as:
gcloud beta alloydb instances update <alloydb_instance_name> \ --database-flags work_mem=65536,google_columnar_engine.enabled='on' \ --region=<region_name> \ --cluster=<alloydb_cluster_name> \ --project=${DEVSHELL_PROJECT_ID} |
IMPORTANT: At this time, our test table is so small that the entire relation can fit in the CE column store which is sized at the default of 1024MB. As our applicable dataset grows, we’ll also need to set the google_columnar_engine.memory_size_in_mb
to a larger value.
After changing the flag/parameter (which means an instance restart), we need to also enable to the CE extension (in each applicable database):
pgbench_test=> CREATE EXTENSION google_columnar_engine; CREATE EXTENSION pgbench_test=> |
And finally, we need to load the actual table into the column store. At this time, we’ll simply load the entire table as it’s very small. With larger tables we’ll need to also use the recommendations engine to only load columns that are useful for our queries.
Loading using the new CE function takes a bit of time:
pgbench_test=> \timing on Timing is on. pgbench_test=> SELECT google_columnar_engine_add('pgbench_accounts'); google_columnar_engine_add ---------------------------- 624 (1 row) Time: 9235.726 ms (00:09.236) pgbench_test=> |
And now we can re-run the EXPLAIN tests and our simple queries:
pgbench_test=> EXPLAIN (ANALYZE,COSTS,SETTINGS,BUFFERS,TIMING,SUMMARY,WAL,VERBOSE) pgbench_test-> SELECT * FROM pgbench_accounts WHERE bid = 500 AND abalance > 100; QUERY PLAN --------------------------------------------------------------------------------------------------------------------------------------------- Append (cost=20.00..29.78 rows=2 width=97) (actual time=0.505..0.506 rows=0 loops=1) -> Custom Scan (columnar scan) on public.pgbench_accounts (cost=20.00..25.72 rows=1 width=97) (actual time=0.504..0.504 rows=0 loops=1) Output: aid, bid, abalance, filler Filter: ((pgbench_accounts.abalance > 100) AND (pgbench_accounts.bid = 500)) Rows Removed by Columnar Filter: 50000000 CU quals: ((pgbench_accounts.abalance > 100) AND (pgbench_accounts.bid = 500)) Columnar cache search mode: native -> Seq Scan on public.pgbench_accounts (cost=0.00..4.06 rows=1 width=97) (never executed) Output: aid, bid, abalance, filler Filter: ((pgbench_accounts.abalance > 100) AND (pgbench_accounts.bid = 500)) Settings: effective_cache_size = '52768720kB', work_mem = '64MB' Query Identifier: -2789621609201040747 Planning Time: 0.580 ms Execution Time: 0.550 ms (14 rows) pgbench_test=> EXPLAIN (ANALYZE,COSTS,SETTINGS,BUFFERS,TIMING,SUMMARY,WAL,VERBOSE) pgbench_test-> SELECT * FROM pgbench_accounts WHERE bid = 500 OR bid = 100; QUERY PLAN ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- - Gather (cost=1000.00..7354.38 rows=191524 width=97) (actual time=0.537..54.927 rows=200000 loops=1) Output: aid, bid, abalance, filler Workers Planned: 2 Workers Launched: 2 -> Parallel Append (cost=0.00..4423.46 rows=79803 width=97) (actual time=0.265..18.123 rows=66667 loops=3) Worker 0: actual time=0.012..0.012 rows=0 loops=1 Worker 1: actual time=0.532..27.130 rows=100000 loops=1 -> Parallel Custom Scan (columnar scan) on public.pgbench_accounts (cost=20.00..4419.43 rows=79802 width=97) (actual time=0.264..13.714 rows=66667 loops=3) Output: aid, bid, abalance, filler Filter: ((pgbench_accounts.bid = 500) OR (pgbench_accounts.bid = 100)) Rows Removed by Columnar Filter: 16600000 CU quals: ((pgbench_accounts.bid = 500) OR (pgbench_accounts.bid = 100)) Columnar cache search mode: native Worker 0: actual time=0.010..0.010 rows=0 loops=1 Worker 1: actual time=0.531..20.585 rows=100000 loops=1 -> Parallel Seq Scan on public.pgbench_accounts (cost=0.00..4.03 rows=1 width=97) (never executed) Output: aid, bid, abalance, filler Filter: ((pgbench_accounts.bid = 500) OR (pgbench_accounts.bid = 100)) Settings: effective_cache_size = '52768720kB', work_mem = '64MB' Query Identifier: 3730570278250096652 Planning Time: 0.437 ms Execution Time: 63.027 ms (22 rows) pgbench_test=> EXPLAIN (ANALYZE,COSTS,SETTINGS,BUFFERS,TIMING,SUMMARY,WAL,VERBOSE) pgbench_test-> SELECT SUM(abalance) FROM pgbench_accounts WHERE bid = 500 OR bid = 100; QUERY PLAN ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- ----------- Finalize Aggregate (cost=2622.64..2622.65 rows=1 width=8) (actual time=10.143..13.340 rows=1 loops=1) Output: sum(abalance) -> Gather (cost=2622.42..2622.63 rows=2 width=8) (actual time=2.839..13.330 rows=3 loops=1) Output: (PARTIAL sum(abalance)) Workers Planned: 2 Workers Launched: 2 -> Partial Aggregate (cost=1622.42..1622.43 rows=1 width=8) (actual time=0.875..0.876 rows=1 loops=3) Output: PARTIAL sum(abalance) Worker 0: actual time=0.014..0.015 rows=1 loops=1 Worker 1: actual time=0.015..0.016 rows=1 loops=1 -> Parallel Append (cost=0.00..1422.91 rows=79803 width=4) (actual time=0.062..0.872 rows=0 loops=3) Worker 0: actual time=0.012..0.013 rows=0 loops=1 Worker 1: actual time=0.013..0.013 rows=0 loops=1 -> Parallel Custom Scan (columnar scan) on public.pgbench_accounts (cost=20.00..1418.89 rows=79802 width=4) (actual time=0.061..0.869 rows=6666 7 loops=3) Output: abalance Filter: ((pgbench_accounts.bid = 500) OR (pgbench_accounts.bid = 100)) Rows Removed by Columnar Filter: 16600000 Rows Aggregated by Columnar Scan: 66667 CU quals: ((pgbench_accounts.bid = 500) OR (pgbench_accounts.bid = 100)) Columnar cache search mode: native Worker 0: actual time=0.011..0.011 rows=0 loops=1 Worker 1: actual time=0.011..0.011 rows=0 loops=1 -> Parallel Seq Scan on public.pgbench_accounts (cost=0.00..4.03 rows=1 width=4) (never executed) Output: abalance Filter: ((pgbench_accounts.bid = 500) OR (pgbench_accounts.bid = 100)) Settings: effective_cache_size = '52768720kB', work_mem = '64MB' Query Identifier: -1803082051895113688 Planning Time: 0.461 ms Execution Time: 13.400 ms (29 rows) pgbench_test=> |
From the above, we can see that query 1 went from 1541.372 ms to just 0.550 ms. But it did no aggregations and returned no rows. Query 2 went from 1648.524 ms to 63.027 ms as it returned 200,000 rows. Still, it’s a huge jump with the CE: 1648.524/63.027=26.156 times faster. And query 3 which added an aggregation went from 1627.749 ms to just 13.400 ms.
In the plans, we can also see “Rows Removed by Columnar Filter
“. The more selective, the query, the more useful the CE filtering.
Testing with Larger Tables and Using the Recommendation Engine
As we start to test with larger amounts of data, we also need to adjust the amount of memory reserved for the Columnar Engine.
Failing to do so will result in an error when we try to load the table:
pgbench_test=> SELECT google_columnar_engine_add('pgbench_accounts'); INFO: Only 343 columnar units have been populated. WARNING: FixedArray::Fill: Out of memory google_columnar_engine_add ---------------------------- 0 (1 row) pgbench_test=> |
The solution to this is to turn on the recommendation engine, run some “training queries,” adjust the memory setting, and then re-test. Reminder: adjusting the memory flag means an instance restart.
To turn on the recommendation engine we must ensure that the parameter google_columnar_engine.enable_columnar_recommendation='on'
is set – which should be the default.
With this parameter set (and after running the three queries) the CE recommendations engine can learn what columns should be added and how large the column store should be.
We first check how much memory the column store is required by running:
pgbench_test=> SELECT google_columnar_engine_run_recommendation(65536,'PERFORMANCE_OPTIMAL'); google_columnar_engine_run_recommendation -------------------------------------------------------------------------------- (1099,"pgbench_test.public.pgbench_accounts(abalance:1,aid:1,bid:1,filler:1)") (1 row) pgbench_test=> |
This reports the optimal column store size for the tracked queries with the first parameter being the maximum we can provide. In our case, that high water mark is 50% of our machine’s 128GB. And the output shows that we need a column store of 1099MB which is only slightly larger than the 1024MB default. For added safety, a good practice to account for potential size estimate inaccuracies (or data volume-driven changes) is to add 10% to 20% to this value.
We need to ensure that we have a column store memory of at least that large. To ensure a column store memory of at least 1099MB, we need to set the flag google_columnar_engine.memory_size_in_mb
. Since we have a large machine with 128GB of memory and want to test with larger tables, we bumped up the column store size quite a bit to a generous value of 8GB.
Now that we have a larger amount of memory allocated to the column store, we redo the training queries and the use a similar command to make it adopt the recommendation and add the suggested columns:
pgbench_test=> SELECT google_columnar_engine_run_recommendation(0,'FIXED_SIZE',TRUE); google_columnar_engine_run_recommendation --------------------------------------------------------------------------------- (8192,"pgbench_test.public.pgbench_accounts(abalance:1,aid:1,bid:1,filler:1)") (1 row) pgbench_test=> |
This time, the first value of “0” tells the engine that there’s no limit on the memory utilization. These recommendations can use as much of the column store as required for adding the currently recommended columns. The final value of “TRUE” means to actually add the columns.
Alternatively, we can have the columns automatically added by setting the flag google_columnar_engine.relations
with the output of the recommendation functions because anything we populate manually using the functions won’t persist through instance restarts. (There is, however, an auto-recommendations and auto-population option to have both work in the background on a schedule.)
Finally, we can verify what tables and columns are in the column store using some new views:
pgbench_test=> SELECT relation_name, status, columnar_unit_count, block_count_in_cc, total_block_count pgbench_test-> FROM g_columnar_relations; relation_name | status | columnar_unit_count | block_count_in_cc | total_block_count ------------------+--------+---------------------+-------------------+------------------- pgbench_accounts | Usable | 444 | 1818182 | 1818182 (1 row) pgbench_test=> SELECT relation_name, column_name, status FROM g_columnar_columns; relation_name | column_name | status ------------------+-------------+-------- pgbench_accounts | aid | Usable pgbench_accounts | bid | Usable pgbench_accounts | abalance | Usable pgbench_accounts | filler | Usable (4 rows) pgbench_test=> |
And now, we’re ready to test and compare with the larger table.
Testing Results with Larger Tables
We increased the table size and re-tested using the procedure described above. The results were:
pgbench_accounts rows | Query 1 Ratio | Query 2 Ratio | Query 3 Ratio |
50,000,000 | 2802.49x | 26.16x | 121.47x |
100,000,000 | 3412.97x | 304.45x | 250.50x |
500,000,000 | 12382.44x | 786.17x | 3499.08x |
These results can look impressive, showing a great performance benefit. But keeping in mind our tests are using a single table with “Seq Scan
” operations, scanning the entire table without using indexes. Your mileage can vary, so don’t take these results as the usual outcome of this feature–they’re the product of very specific queries for which the CE is providing lookup abilities similar to indexes.
And creating larger tables to scale-up the testing becomes pointless as the table size will quickly exceed the available (machine) memory, forcing more IOs.
Conclusions
After this initial testing, and with some admittedly narrow scoped queries designed specifically to illustrate the potential benefits that the Columnar Engine in the new GCP AlloyDB service provides, we saw significant performance improvements–at least 26x faster, with potentially much more.
Keep in mind that:
- A columnar data store is optimal for the right type of query–specifically analytical queries. In OLTP and mixed query workloads, the results may be very different.
- Even with analytical queries, the right columns must be properly cached in the column store, and the queries must be structured accordingly.
- Columnar store memory caching and memory hits vs. IOs (truly physical or serviced from the OS file cache) are also crucial.
It’s important to note that some up-front work is required. For example, you’ll need to properly size the column store, train the recommendations engine, and ensure that the columns are indeed loaded. Or rely on the automatic recommendations and adoption options – this is likely the best approach. But with some planning, and for the right type of query, the Columnar Engine has the potential to generate significant performance improvements.
The tests described above are just a starting point. Further testing that includes devising a more application-specific or industry benchmarking tool and with consideration of caching and warm-up runs (to maximize memory hits and to minimize IOs) would be the next steps.
I hope you’ve found this post helpful. Feel free to share your questions in the comments and subscribe to catch the next post.
Share this
- Technical Track (969)
- Oracle (400)
- MySQL (137)
- Cloud (131)
- Open Source (90)
- Google Cloud (83)
- DBA Lounge (76)
- Microsoft SQL Server (76)
- Technical Blog (74)
- Big Data (52)
- AWS (49)
- Google Cloud Platform (47)
- Cassandra (44)
- DevOps (41)
- Azure (38)
- Pythian (33)
- Linux (30)
- Database (26)
- Podcasts (25)
- Site Reliability Engineering (25)
- Performance (24)
- SQL Server (24)
- Microsoft Azure (23)
- Oracle E-Business Suite (23)
- PostgreSQL (23)
- Oracle Database (22)
- Docker (21)
- Group Blog Posts (20)
- Security (20)
- DBA (19)
- Log Buffer (19)
- SQL (19)
- Exadata (18)
- Mongodb (18)
- Oracle Cloud Infrastructure (OCI) (18)
- Oracle Exadata (18)
- Automation (17)
- Hadoop (16)
- Oracleebs (16)
- Amazon RDS (15)
- Ansible (15)
- Ebs (15)
- Snowflake (15)
- ASM (13)
- BigQuery (13)
- Patching (13)
- RDS (13)
- Replication (13)
- Data (12)
- GenAI (12)
- Kubernetes (12)
- Oracle 12C (12)
- Advanced Analytics (11)
- Backup (11)
- LLM (11)
- Machine Learning (11)
- OCI (11)
- Rman (11)
- Cloud Migration (10)
- Datascape Podcast (10)
- Monitoring (10)
- R12 (10)
- 12C (9)
- AI (9)
- Apache Cassandra (9)
- Data Guard (9)
- Infrastructure (9)
- Oracle 19C (9)
- Oracle Applications (9)
- Python (9)
- Series (9)
- AWR (8)
- Amazon Web Services (AWS) (8)
- Articles (8)
- High Availability (8)
- Oracle EBS (8)
- Percona (8)
- Powershell (8)
- Recovery (8)
- Weblogic (8)
- Apache Beam (7)
- Backups (7)
- Data Governance (7)
- Goldengate (7)
- Innodb (7)
- Migration (7)
- Myrocks (7)
- OEM (7)
- Oracle Enterprise Manager (OEM) (7)
- Performance Tuning (7)
- Authentication (6)
- ChatGPT-4 (6)
- Data Enablement (6)
- Database Performance (6)
- E-Business Suite (6)
- Fmw (6)
- Grafana (6)
- Oracle Enterprise Manager (6)
- Orchestrator (6)
- Postgres (6)
- Rac (6)
- Renew Refresh Republish (6)
- RocksDB (6)
- Serverless (6)
- Upgrade (6)
- 19C (5)
- Azure Data Factory (5)
- Azure Synapse Analytics (5)
- Cpu (5)
- Data Visualization (5)
- Disaster Recovery (5)
- Error (5)
- Generative AI (5)
- Google BigQuery (5)
- Indexes (5)
- Love Letters To Data (5)
- Mariadb (5)
- Microsoft (5)
- Proxysql (5)
- Scala (5)
- Sql Server Administration (5)
- VMware (5)
- Windows (5)
- Xtrabackup (5)
- Airflow (4)
- Analytics (4)
- Apex (4)
- Best Practices (4)
- Centrally Managed Users (4)
- Cli (4)
- Cloud FinOps (4)
- Cloud Spanner (4)
- Cockroachdb (4)
- Configuration Management (4)
- Container (4)
- Data Management (4)
- Data Pipeline (4)
- Data Security (4)
- Data Strategy (4)
- Database Administrator (4)
- Database Management (4)
- Database Migration (4)
- Dataflow (4)
- Dbsat (4)
- Elasticsearch (4)
- Fahd Mirza (4)
- Fusion Middleware (4)
- Google (4)
- Io (4)
- Java (4)
- Kafka (4)
- Middleware (4)
- Mysql 8 (4)
- Network (4)
- Ocidtab (4)
- Opatch (4)
- Oracle Autonomous Database (Adb) (4)
- Oracle Cloud (4)
- Pitr (4)
- Post-Mortem Analysis (4)
- Prometheus (4)
- Redhat (4)
- September 9Th 2015 (4)
- Sql2016 (4)
- Ssl (4)
- Terraform (4)
- Workflow (4)
- 2Fa (3)
- Alwayson (3)
- Amazon Relational Database Service (Rds) (3)
- Apache Kafka (3)
- Apexexport (3)
- Aurora (3)
- Azure Sql Db (3)
- Cdb (3)
- ChatGPT (3)
- Cloud Armor (3)
- Cloud Database (3)
- Cloud Security (3)
- Cluster (3)
- Consul (3)
- Cosmos Db (3)
- Cost Management (3)
- Covid19 (3)
- Crontab (3)
- Data Analytics (3)
- Data Integration (3)
- Database 12C (3)
- Database Monitoring (3)
- Database Troubleshooting (3)
- Database Upgrade (3)
- Databases (3)
- Dataops (3)
- Dbt (3)
- Digital Transformation (3)
- ERP (3)
- Google Chrome (3)
- Google Cloud Sql (3)
- Graphite (3)
- Haproxy (3)
- Heterogeneous Database Migration (3)
- Hugepages (3)
- Inside Pythian (3)
- Installation (3)
- Json (3)
- Keras (3)
- Ldap (3)
- Liquibase (3)
- Love Letter (3)
- Lua (3)
- Mfa (3)
- Multitenant (3)
- Mysql 5.7 (3)
- Mysql Configuration (3)
- Nginx (3)
- Nodetool (3)
- Non-Tech Articles (3)
- Oem 13C (3)
- Oms (3)
- Oracle 18C (3)
- Oracle Data Guard (3)
- Oracle Live Sql (3)
- Oracle Rac (3)
- Patch (3)
- Perl (3)
- Pmm (3)
- Pt-Online-Schema-Change (3)
- Rdbms (3)
- Recommended (3)
- Remote Teams (3)
- Reporting (3)
- Reverse Proxy (3)
- S3 (3)
- Spark (3)
- Sql On The Edge (3)
- Sql Server Configuration (3)
- Sql Server On Linux (3)
- Ssis (3)
- Ssis Catalog (3)
- Stefan Knecht (3)
- Striim (3)
- Sysadmin (3)
- System Versioned (3)
- Systemd (3)
- Temporal Tables (3)
- Tensorflow (3)
- Tools (3)
- Tuning (3)
- Vasu Balla (3)
- Vault (3)
- Vulnerability (3)
- Waf (3)
- 18C (2)
- Adf (2)
- Adop (2)
- Agent (2)
- Agile (2)
- Amazon Data Migration Service (2)
- Amazon Ec2 (2)
- Amazon S3 (2)
- Apache Flink (2)
- Apple (2)
- Apps (2)
- Ashdump (2)
- Atp (2)
- Audit (2)
- Automatic Backups (2)
- Autonomous (2)
- Autoupgrade (2)
- Awr Data Mining (2)
- Azure Sql (2)
- Azure Sql Data Sync (2)
- Bash (2)
- Business (2)
- Business Intelligence (2)
- Caching (2)
- Cassandra Nodetool (2)
- Cdap (2)
- Certification (2)
- Cloning (2)
- Cloud Cost Optimization (2)
- Cloud Data Fusion (2)
- Cloud Hosting (2)
- Cloud Infrastructure (2)
- Cloud Shell (2)
- Cloud Sql (2)
- Cloudscape (2)
- Cluster Level Consistency (2)
- Conferences (2)
- Consul-Template (2)
- Containerization (2)
- Containers (2)
- Cosmosdb (2)
- Costs (2)
- Cql (2)
- Cqlsh (2)
- Cyber Security (2)
- Data Discovery (2)
- Data Migration (2)
- Data Quality (2)
- Data Streaming (2)
- Data Warehouse (2)
- Database Consulting (2)
- Database Migrations (2)
- Dataguard (2)
- Datapump (2)
- Ddl (2)
- Debezium (2)
- Dictionary Views (2)
- Dms (2)
- Docker-Composer (2)
- Dr (2)
- Duplicate (2)
- Ecc (2)
- Elastic (2)
- Elastic Stack (2)
- Em12C (2)
- Encryption (2)
- Enterprise Data Platform (EDP) (2)
- Enterprise Manager (2)
- Etl (2)
- Events (2)
- Exachk (2)
- Filter Driver (2)
- Flume (2)
- Full Text Search (2)
- Galera (2)
- Gemini (2)
- General Purpose Ssd (2)
- Gh-Ost (2)
- Gke (2)
- Google Workspace (2)
- Hanganalyze (2)
- Hdfs (2)
- Health Check (2)
- Historical Trends (2)
- Incremental (2)
- Infiniband (2)
- Infrastructure As Code (2)
- Innodb Cluster (2)
- Innodb File Structure (2)
- Innodb Group Replication (2)
- Install (2)
- Internals (2)
- Java Web Start (2)
- Kibana (2)
- Log (2)
- Log4J (2)
- Logs (2)
- Memory (2)
- Merge Replication (2)
- Metrics (2)
- Mutex (2)
- MySQLShell (2)
- NLP (2)
- Neo4J (2)
- Node.Js (2)
- Nosql (2)
- November 11Th 2015 (2)
- Ntp (2)
- Oci Iam (2)
- Oem12C (2)
- Omspatcher (2)
- Opatchauto (2)
- Open Source Database (2)
- Operational Excellence (2)
- Oracle 11G (2)
- Oracle Datase (2)
- Oracle Extended Manager (Oem) (2)
- Oracle Flashback (2)
- Oracle Forms (2)
- Oracle Installation (2)
- Oracle Io Testing (2)
- Pdb (2)
- Podcast (2)
- Puppet (2)
- Pythian Europe (2)
- R12.2 (2)
- Redshift (2)
- Remote DBA (2)
- Remote Sre (2)
- SAP (2)
- SAP HANA Cloud (2)
- Sap Migration (2)
- Scale (2)
- Schema (2)
- September 30Th 2015 (2)
- September 3Rd 2015 (2)
- Shell (2)
- Simon Pane (2)
- Single Sign-On (2)
- Sql Server On Gke (2)
- Sqlplus (2)
- Sre (2)
- Ssis Catalog Error (2)
- Ssisdb (2)
- Standby (2)
- Statspack Mining (2)
- Systemstate Dump (2)
- Tablespace (2)
- Technical Training (2)
- Tempdb (2)
- Tfa (2)
- Throughput (2)
- Tls (2)
- Tombstones (2)
- Transactional Replication (2)
- User Groups (2)
- Vagrant (2)
- Variables (2)
- Virtual Machine (2)
- Virtual Machines (2)
- Virtualbox (2)
- Web Application Firewall (2)
- Webinars (2)
- X5 (2)
- scalability (2)
- //Build2019 (1)
- 11G (1)
- 12.1 (1)
- 12Cr1 (1)
- 12Cr2 (1)
- 18C Grid Installation (1)
- 2022 (1)
- 2022 Snowflake Summit (1)
- AI Platform (1)
- AI Summit (1)
- Actifio (1)
- Active Directory (1)
- Adaptive Hash Index (1)
- Adf Custom Email (1)
- Adobe Flash (1)
- Adrci (1)
- Advanced Data Services (1)
- Afd (1)
- After Logon Trigger (1)
- Ahf (1)
- Aix (1)
- Akka (1)
- Alloydb (1)
- Alter Table (1)
- Always On (1)
- Always On Listener (1)
- Alwayson With Gke (1)
- Amazon (1)
- Amazon Athena (1)
- Amazon Aurora Backtrack (1)
- Amazon Efs (1)
- Amazon Redshift (1)
- Amazon Sagemaker (1)
- Amazon Vpc Flow Logs (1)
- Amdu (1)
- Analysis (1)
- Analytical Models (1)
- Analyzing Bigquery Via Sheets (1)
- Anisble (1)
- Annual Mysql Community Dinner (1)
- Anthos (1)
- Apache (1)
- Apache Nifi (1)
- Apache Spark (1)
- Application Migration (1)
- Architect (1)
- Architecture (1)
- Ash (1)
- Asmlib (1)
- Atlas CLI (1)
- Audit In Postgres (1)
- Audit In Postgresql (1)
- Auto Failover (1)
- Auto Increment (1)
- Auto Index (1)
- Autoconfig (1)
- Automated Reports (1)
- Automl (1)
- Autostart (1)
- Awr Mining (1)
- Aws Glue (1)
- Aws Lake Formation (1)
- Aws Lambda (1)
- Azure Analysis Services (1)
- Azure Blob Storage (1)
- Azure Cognitive Search (1)
- Azure Data (1)
- Azure Data Lake (1)
- Azure Data Lake Analytics (1)
- Azure Data Lake Store (1)
- Azure Data Migration Service (1)
- Azure Dma (1)
- Azure Dms (1)
- Azure Document Intelligence (1)
- Azure Integration Runtime (1)
- Azure OpenAI (1)
- Azure Sql Data Warehouse (1)
- Azure Sql Dw (1)
- Azure Sql Managed Instance (1)
- Azure Vm (1)
- Backup For Sql Server (1)
- Bacpac (1)
- Bag (1)
- Bare Metal Solution (1)
- Batch Operation (1)
- Batches In Cassandra (1)
- Beats (1)
- Best Practice (1)
- Bi Publisher (1)
- Binary Logging (1)
- Bind Variables (1)
- Bitnami (1)
- Blob Storage Endpoint (1)
- Blockchain (1)
- Browsers (1)
- Btp Architecture (1)
- Btp Components (1)
- Buffer Pool (1)
- Bug (1)
- Bugs (1)
- Build 2019 Updates (1)
- Build Cassandra (1)
- Bundle Patch (1)
- Bushy Join (1)
- Business Continuity (1)
- Business Insights (1)
- Business Process Modelling (1)
- Business Reputation (1)
- CAPEX (1)
- Capacity Planning (1)
- Career (1)
- Career Development (1)
- Cassandra-Cli (1)
- Catcon.Pm (1)
- Catctl.Pl (1)
- Catupgrd.Sql (1)
- Cbo (1)
- Cdb Duplication (1)
- Certificate (1)
- Certificate Management (1)
- Chaos Engineering (1)
- Cheatsheet (1)
- Checkactivefilesandexecutables (1)
- Chmod (1)
- Chown (1)
- Chrome Enterprise (1)
- Chrome Security (1)
- Cl-Series (1)
- Cleanup (1)
- Cloud Browser (1)
- Cloud Build (1)
- Cloud Consulting (1)
- Cloud Data Warehouse (1)
- Cloud Database Management (1)
- Cloud Dataproc (1)
- Cloud Foundry (1)
- Cloud Manager (1)
- Cloud Migations (1)
- Cloud Networking (1)
- Cloud SQL Replica (1)
- Cloud Scheduler (1)
- Cloud Services (1)
- Cloud Strategies (1)
- Cloudformation (1)
- Cluster Resource (1)
- Cmo (1)
- Cockroach Db (1)
- Coding Benchmarks (1)
- Colab (1)
- Collectd (1)
- Columnar (1)
- Communication Plans (1)
- Community (1)
- Compact Storage (1)
- Compaction (1)
- Compliance (1)
- Compression (1)
- Compute Instances (1)
- Compute Node (1)
- Concurrent Manager (1)
- Concurrent Processing (1)
- Configuration (1)
- Consistency Level (1)
- Consolidation (1)
- Conversational AI (1)
- Covid-19 (1)
- Cpu Patching (1)
- Cqlsstablewriter (1)
- Crash (1)
- Create Catalog Error (1)
- Create_File_Dest (1)
- Credentials (1)
- Cross Platform (1)
- CrowdStrike (1)
- Crsctl (1)
- Custom Instance Images (1)
- Cve-2022-21500 (1)
- Cvu (1)
- Cypher Queries (1)
- DBSAT 3 (1)
- Dacpac (1)
- Dag (1)
- Data Analysis (1)
- Data Analytics Platform (1)
- Data Box (1)
- Data Classification (1)
- Data Cleansing (1)
- Data Encryption (1)
- Data Engineering (1)
- Data Estate (1)
- Data Flow Management (1)
- Data Insights (1)
- Data Integrity (1)
- Data Lake (1)
- Data Leader (1)
- Data Lifecycle Management (1)
- Data Lineage (1)
- Data Masking (1)
- Data Mesh (1)
- Data Migration Assistant (1)
- Data Migration Service (1)
- Data Mining (1)
- Data Modeling (1)
- Data Monetization (1)
- Data Policy (1)
- Data Profiling (1)
- Data Protection (1)
- Data Retention (1)
- Data Safe (1)
- Data Sheets (1)
- Data Summit (1)
- Data Vault (1)
- Data Warehouse Modernization (1)
- Database Auditing (1)
- Database Consultant (1)
- Database Link (1)
- Database Modernization (1)
- Database Provisioning (1)
- Database Provisioning Failed (1)
- Database Replication (1)
- Database Scaling (1)
- Database Schemas (1)
- Database Security (1)
- Databricks (1)
- Datadog (1)
- Datafile (1)
- Datapatch (1)
- Dataprivacy (1)
- Datascape 59 (1)
- Datasets (1)
- Datastax Cassandra (1)
- Datastax Opscenter (1)
- Datasync Error (1)
- Db_Create_File_Dest (1)
- Dbaas (1)
- Dbatools (1)
- Dbcc Checkident (1)
- Dbms_Cloud (1)
- Dbms_File_Transfer (1)
- Dbms_Metadata (1)
- Dbms_Service (1)
- Dbms_Stats (1)
- Dbupgrade (1)
- Deep Learning (1)
- Delivery (1)
- Devd (1)
- Dgbroker (1)
- Dialogflow (1)
- Dict0Dict (1)
- Did You Know (1)
- Direct Path Read Temp (1)
- Disk Groups (1)
- Disk Management (1)
- Diskgroup (1)
- Dispatchers (1)
- Distributed Ag (1)
- Distribution Agent (1)
- Documentation (1)
- Download (1)
- Dp Agent (1)
- Duet AI (1)
- Duplication (1)
- Dynamic Sampling (1)
- Dynamic Tasks (1)
- E-Business Suite Cpu Patching (1)
- E-Business Suite Patching (1)
- Ebs Sso (1)
- Ec2 (1)
- Edb Postgresql Advanced Server (1)
- Edb Postgresql Password Verify Function (1)
- Editions (1)
- Edp (1)
- El Carro (1)
- Elassandra (1)
- Elk Stack (1)
- Em13Cr2 (1)
- Emcli (1)
- End of Life (1)
- Engineering (1)
- Enqueue (1)
- Enterprise (1)
- Enterprise Architecture (1)
- Enterprise Command Centers (1)
- Enterprise Manager Command Line Interface (Em Cli (1)
- Enterprise Plus (1)
- Episode 58 (1)
- Error Handling (1)
- Exacc (1)
- Exacheck (1)
- Exacs (1)
- Exadata Asr (1)
- Execution (1)
- Executive Sponsor (1)
- Expenditure (1)
- Export Sccm Collection To Csv (1)
- External Persistent Volumes (1)
- Fail (1)
- Failed Upgrade (1)
- Failover In Postgresql (1)
- Fall 2021 (1)
- Fast Recovery Area (1)
- FinOps Strategy (1)
- Flash Recovery Area (1)
- Flashback (1)
- Fnd (1)
- Fndsm (1)
- Force_Matching_Signature (1)
- Fra Full (1)
- Framework (1)
- Freebsd (1)
- Fsync (1)
- Function-Based Index (1)
- GCVE Architecture (1)
- GPQA (1)
- Gaming (1)
- Garbagecollect (1)
- Gcp Compute (1)
- Gcp-Spanner (1)
- Geography (1)
- Geth (1)
- Getmospatch (1)
- Git (1)
- Global Analytics (1)
- Gmail (1)
- Gmail Security (1)
- Google Analytics (1)
- Google Cloud Architecture Framework (1)
- Google Cloud Data Services (1)
- Google Cloud Partner (1)
- Google Cloud Spanner (1)
- Google Cloud VMware Engine (1)
- Google Compute Engine (1)
- Google Dataflow (1)
- Google Datalab (1)
- Google Grab And Go (1)
- Google Sheets (1)
- Gp2 (1)
- Graph Algorithms (1)
- Graph Databases (1)
- Graph Inferences (1)
- Graph Theory (1)
- GraphQL (1)
- Graphical User Interface (Gui) (1)
- Grid (1)
- Grid Infrastructure (1)
- Griddisk Resize (1)
- Grp (1)
- Guaranteed Restore Point (1)
- Guid Mismatch (1)
- HR Technology (1)
- HRM (1)
- Ha (1)
- Hang (1)
- Hashicorp (1)
- Hbase (1)
- Hcc (1)
- Hdinsight (1)
- Healthcheck (1)
- Hemantgiri S. Goswami (1)
- Hortonworks (1)
- How To Install Ssrs (1)
- Hr (1)
- Httpchk (1)
- Https (1)
- Huge Pages (1)
- HumanEval (1)
- Hung Database (1)
- Hybrid Columnar Compression (1)
- Hyper-V (1)
- Hyperscale (1)
- Hypothesis Driven Development (1)
- Ibm (1)
- Identity Management (1)
- Idm (1)
- Ilom (1)
- Imageinfo (1)
- Impdp (1)
- In Place Upgrade (1)
- Incident Response (1)
- Indempotent (1)
- Indexing In Mongodb (1)
- Influxdb (1)
- Information (1)
- Infrastructure As A Code (1)
- Injection (1)
- Innobackupex (1)
- Innodb Concurrency (1)
- Innodb Flush Method (1)
- Insights (1)
- Installing (1)
- Instance Cloning (1)
- Integration Services (1)
- Integrations (1)
- Interactive_Timeout (1)
- Interval Partitioning (1)
- Invisible Indexes (1)
- Io1 (1)
- IoT (1)
- Iops (1)
- Iphone (1)
- Ipv6 (1)
- Iscsi (1)
- Iscsi-Initiator-Utils (1)
- Iscsiadm (1)
- Issues (1)
- It Industry (1)
- It Teams (1)
- JMX Metrics (1)
- Jared Still (1)
- Javascript (1)
- Jdbc (1)
- Jinja2 (1)
- Jmx (1)
- Jmx Monitoring (1)
- Jvm (1)
- Jython (1)
- K8S (1)
- Kernel (1)
- Key Btp Components (1)
- Kfed (1)
- Kill Sessions (1)
- Knapsack (1)
- Kubeflow (1)
- LMSYS Chatbot Arena (1)
- Large Pages (1)
- Latency (1)
- Latest News (1)
- Leadership (1)
- Leap Second (1)
- Limits (1)
- Line 1 (1)
- Linkcolumn (1)
- Linux Host Monitoring (1)
- Linux Storage Appliance (1)
- Listener (1)
- Loadavg (1)
- Lock_Sga (1)
- Locks (1)
- Log File Switch (Archiving Needed) (1)
- Logfile (1)
- Looker (1)
- Lvm (1)
- MMLU (1)
- Managed Instance (1)
- Managed Services (1)
- Management (1)
- Management Servers (1)
- Marketing (1)
- Marketing Analytics (1)
- Martech (1)
- Masking (1)
- Megha Bedi (1)
- Metadata (1)
- Method-R Workbench (1)
- Metric (1)
- Metric Extensions (1)
- Michelle Gutzait (1)
- Microservices (1)
- Microsoft Azure Sql Database (1)
- Microsoft Build (1)
- Microsoft Build 2019 (1)
- Microsoft Ignite (1)
- Microsoft Inspire 2019 (1)
- Migrate (1)
- Migrating Ssis Catalog (1)
- Migrating To Azure Sql (1)
- Migration Checklist (1)
- Mirroring (1)
- Mismatch (1)
- Model Governance (1)
- Monetization (1)
- MongoDB Atlas (1)
- MongoDB Compass (1)
- Ms Excel (1)
- Msdtc (1)
- Msdtc In Always On (1)
- Msdtc In Cluster (1)
- Multi-IP (1)
- Multicast (1)
- Multipath (1)
- My.Cnf (1)
- MySQL Shell Logical Backup (1)
- MySQLDump (1)
- Mysql Enterprise (1)
- Mysql Plugin For Oracle Enterprise Manager (1)
- Mysql Replication Filters (1)
- Mysql Server (1)
- Mysql-Python (1)
- Nagios (1)
- Ndb (1)
- Net_Read_Timeout (1)
- Net_Write_Timeout (1)
- Netcat (1)
- Newsroom (1)
- Nfs (1)
- Nifi (1)
- Node (1)
- November 10Th 2015 (1)
- November 6Th 2015 (1)
- Null Columns (1)
- Nullipotent (1)
- OPEX (1)
- ORAPKI (1)
- O_Direct (1)
- Oacore (1)
- October 21St 2015 (1)
- October 6Th 2015 (1)
- October 8Th 2015 (1)
- Oda (1)
- Odbcs (1)
- Odbs (1)
- Odi (1)
- Oel (1)
- Ohs (1)
- Olvm (1)
- On-Prem To Azure Sql (1)
- On-Premises (1)
- Onclick (1)
- Open.Canada.Ca (1)
- Openstack (1)
- Operating System Monitoring (1)
- Oplog (1)
- Opsworks (1)
- Optimization (1)
- Optimizer (1)
- Ora-01852 (1)
- Ora-7445 (1)
- Oracle 19 (1)
- Oracle 20C (1)
- Oracle Cursor (1)
- Oracle Database 12.2 (1)
- Oracle Database Appliance (1)
- Oracle Database Se2 (1)
- Oracle Database Standard Edition 2 (1)
- Oracle Database Upgrade (1)
- Oracle Database@Google Cloud (1)
- Oracle Exadata Smart Scan (1)
- Oracle Licensing (1)
- Oracle Linux Virtualization Manager (1)
- Oracle Oda (1)
- Oracle Openworld (1)
- Oracle Parallelism (1)
- Oracle Rdbms (1)
- Oracle Real Application Clusters (1)
- Oracle Reports (1)
- Oracle Security (1)
- Oracle Wallet (1)
- Orasrp (1)
- Organizational Change (1)
- Orion (1)
- Os (1)
- Osbws_Install.Jar (1)
- Oui Gui (1)
- Output (1)
- Owox (1)
- Paas (1)
- Package Deployment Wizard Error (1)
- Parallel Execution (1)
- Parallel Query (1)
- Parallel Query Downgrade (1)
- Partitioning (1)
- Partitions (1)
- Password (1)
- Password Change (1)
- Password Recovery (1)
- Password Verify Function In Postgresql (1)
- Patches (1)
- Patchmgr (1)
- Pdb Duplication (1)
- Penalty (1)
- Perfomrance (1)
- Performance Schema (1)
- Pg 15 (1)
- Pg_Rewind (1)
- Pga (1)
- Pipeline Debugging (1)
- Pivot (1)
- Planning (1)
- Plsql (1)
- Policy (1)
- Polybase (1)
- Post-Acquisition (1)
- Post-Covid It (1)
- Postgresql Complex Password (1)
- Postgresql With Repmgr Integration (1)
- Power Bi (1)
- Pq (1)
- Preliminar Connection (1)
- Preliminary Connection (1)
- Privatecloud (1)
- Process Mining (1)
- Production (1)
- Productivity (1)
- Profile In Edb Postgresql (1)
- Programming (1)
- Prompt Engineering (1)
- Provisioned Iops (1)
- Provisiones Iops (1)
- Proxy Monitoring (1)
- Psu (1)
- Public Cloud (1)
- Pubsub (1)
- Purge (1)
- Purge Thread (1)
- Pythian Blackbird Acquisition (1)
- Pythian Goodies (1)
- Pythian News (1)
- Python Pandas (1)
- Query Performance (1)
- Quicksight (1)
- Quota Limits (1)
- R12 R12.2 Cp Concurrent Processing Abort (1)
- R12.1.3 (1)
- REF! (1)
- Ram Cache (1)
- Rbac (1)
- Rdb (1)
- Rds_File_Util (1)
- Read Free Replication (1)
- Read Latency (1)
- Read Only (1)
- Read Replica (1)
- Reboot (1)
- Recruiting (1)
- Redo Size (1)
- Relational Database Management System (1)
- Release (1)
- Release Automation (1)
- Repair (1)
- Replication Compatibility (1)
- Replication Error (1)
- Repmgr (1)
- Repmgrd (1)
- Reporting Services 2019 (1)
- Resiliency Planning (1)
- Resource Manager (1)
- Resources (1)
- Restore (1)
- Restore Point (1)
- Retail (1)
- Rhel (1)
- Risk (1)
- Risk Management (1)
- Rocksrb (1)
- Role In Postgresql (1)
- Rollback (1)
- Rolling Patch (1)
- Row0Purge (1)
- Rpm (1)
- Rule "Existing Clustered Or Clustered-Prepared In (1)
- Running Discovery On Remote Machine (1)
- SQL Optimization (1)
- SQL Tracing (1)
- SSRS Administration (1)
- SaaS (1)
- Sap Assessment (1)
- Sap Assessment Report (1)
- Sap Backup Restore (1)
- Sap Btp Architecture (1)
- Sap Btp Benefits (1)
- Sap Btp Model (1)
- Sap Btp Services (1)
- Sap Homogenous System Copy Method (1)
- Sap Landscape Copy (1)
- Sap Migration Assessment (1)
- Sap On Mssql (1)
- Sap System Copy (1)
- Sar (1)
- Scaling Ir (1)
- Sccm (1)
- Sccm Powershell (1)
- Scheduler (1)
- Scheduler_Job (1)
- Schedulers (1)
- Scheduling (1)
- Scott Mccormick (1)
- Scripts (1)
- Sdp (1)
- Secrets (1)
- Securing Sql Server (1)
- Security Compliance (1)
- Sed (Stream Editor) (1)
- Self Hosted Ir (1)
- Semaphore (1)
- Seps (1)
- September 11Th 2015 (1)
- Serverless Computing (1)
- Serverless Framework (1)
- Service Broker (1)
- Service Bus (1)
- Shared Connections (1)
- Shared Storage (1)
- Shellshock (1)
- Signals (1)
- Silent (1)
- Slave (1)
- Slob (1)
- Smart Scan (1)
- Smtp (1)
- Snapshot (1)
- Snowday Fall 2021 (1)
- Socat (1)
- Software Development (1)
- Software Engineering (1)
- Solutions Architecture (1)
- Spanner-Backups (1)
- Sphinx (1)
- Split Brain In Postgresql (1)
- Spm (1)
- Sql Agent (1)
- Sql Backup To Url Error (1)
- Sql Cluster Installer Hang (1)
- Sql Database (1)
- Sql Developer (1)
- Sql On Linux (1)
- Sql Server 2014 (1)
- Sql Server 2016 (1)
- Sql Server Agent On Linux (1)
- Sql Server Backups (1)
- Sql Server Denali Is Required To Install Integrat (1)
- Sql Server Health Check (1)
- Sql Server Troubleshooting On Linux (1)
- Sql Server Version (1)
- Sql Setup (1)
- Sql Vm (1)
- Sql2K19Ongke (1)
- Sqldatabase Serverless (1)
- Ssh User Equivalence (1)
- Ssis Denali Error (1)
- Ssis Install Error E Xisting Clustered Or Cluster (1)
- Ssis Package Deployment Error (1)
- Ssisdb Master Key (1)
- Ssisdb Restore Error (1)
- Sso (1)
- Ssrs 2019 (1)
- Sstable2Json (1)
- Sstableloader (1)
- Sstablesimpleunsortedwriter (1)
- Stack Dump (1)
- Standard Edition (1)
- Startup Process (1)
- Statistics (1)
- Statspack (1)
- Statspack Data Mining (1)
- Statspack Erroneously Reporting (1)
- Statspack Issues (1)
- Storage (1)
- Stored Procedure (1)
- Strategies (1)
- Streaming (1)
- Sunos (1)
- Swap (1)
- Swapping (1)
- Switch (1)
- Syft (1)
- Synapse (1)
- Sync Failed There Is Not Enough Space On The Disk (1)
- Sys Schema (1)
- System Function (1)
- Systems Administration (1)
- T-Sql (1)
- Table Optimization (1)
- Tablespace Growth (1)
- Tablespaces (1)
- Tags (1)
- Tar (1)
- Tde (1)
- Team Management (1)
- Tech Debt (1)
- Technology (1)
- Telegraf (1)
- Tempdb Encryption (1)
- Templates (1)
- Temporary Tablespace (1)
- Tenserflow (1)
- Teradata (1)
- Testing New Cassandra Builds (1)
- There Is Not Enough Space On The Disk (1)
- Thick Data (1)
- Third-Party Data (1)
- Thrift (1)
- Thrift Data (1)
- Tidb (1)
- Time Series (1)
- Time-Drift (1)
- Tkprof (1)
- Tmux (1)
- Tns (1)
- Trace (1)
- Tracefile (1)
- Training (1)
- Transaction Log (1)
- Transactions (1)
- Transformation Navigator (1)
- Transparent Data Encryption (1)
- Trigger (1)
- Triggers On Memory-Optimized Tables Must Use With (1)
- Troubleshooting (1)
- Tungsten (1)
- Tvdxtat (1)
- Twitter (1)
- U-Sql (1)
- UNDO Tablespace (1)
- Upgrade Issues (1)
- Uptime (1)
- Uptrade (1)
- Url Backup Error (1)
- Usability (1)
- Use Cases (1)
- User (1)
- User Defined Compactions (1)
- Utilization (1)
- Utl_Smtp (1)
- VDI Jump Host (1)
- Validate Structure (1)
- Validate_Credentials (1)
- Value (1)
- Velocity (1)
- Vertex AI (1)
- Vertica (1)
- Vertical Slicing (1)
- Videos (1)
- Virtual Private Cloud (1)
- Virtualization (1)
- Vision (1)
- Vpn (1)
- Wait_Timeout (1)
- Wallet (1)
- Webhook (1)
- Weblogic Connection Filters (1)
- Webscale Database (1)
- Windows 10 (1)
- Windows Powershell (1)
- WiredTiger (1)
- With Native_Compilation (1)
- Word (1)
- Workshop (1)
- Workspace Security (1)
- Xbstream (1)
- Xml Publisher (1)
- Zabbix (1)
- dbms_Monitor (1)
- postgresql 16 (1)
- sqltrace (1)
- tracing (1)
- vSphere (1)
- xml (1)
- October 2024 (2)
- September 2024 (7)
- August 2024 (4)
- July 2024 (2)
- June 2024 (6)
- May 2024 (3)
- April 2024 (2)
- February 2024 (2)
- January 2024 (11)
- December 2023 (10)
- November 2023 (11)
- October 2023 (10)
- September 2023 (8)
- August 2023 (7)
- July 2023 (2)
- June 2023 (13)
- May 2023 (4)
- April 2023 (6)
- March 2023 (10)
- February 2023 (6)
- January 2023 (5)
- December 2022 (10)
- November 2022 (10)
- October 2022 (10)
- September 2022 (13)
- August 2022 (16)
- July 2022 (12)
- June 2022 (13)
- May 2022 (11)
- April 2022 (4)
- March 2022 (5)
- February 2022 (4)
- January 2022 (14)
- December 2021 (16)
- November 2021 (11)
- October 2021 (7)
- September 2021 (11)
- August 2021 (6)
- July 2021 (9)
- June 2021 (4)
- May 2021 (8)
- April 2021 (16)
- March 2021 (16)
- February 2021 (6)
- January 2021 (12)
- December 2020 (12)
- November 2020 (17)
- October 2020 (11)
- September 2020 (10)
- August 2020 (11)
- July 2020 (13)
- June 2020 (6)
- May 2020 (9)
- April 2020 (18)
- March 2020 (21)
- February 2020 (13)
- January 2020 (15)
- December 2019 (10)
- November 2019 (11)
- October 2019 (12)
- September 2019 (16)
- August 2019 (15)
- July 2019 (10)
- June 2019 (16)
- May 2019 (20)
- April 2019 (21)
- March 2019 (14)
- February 2019 (18)
- January 2019 (18)
- December 2018 (5)
- November 2018 (16)
- October 2018 (12)
- September 2018 (20)
- August 2018 (27)
- July 2018 (31)
- June 2018 (34)
- May 2018 (28)
- April 2018 (27)
- March 2018 (17)
- February 2018 (8)
- January 2018 (20)
- December 2017 (14)
- November 2017 (4)
- October 2017 (1)
- September 2017 (3)
- August 2017 (5)
- July 2017 (4)
- June 2017 (2)
- May 2017 (7)
- April 2017 (7)
- March 2017 (8)
- February 2017 (8)
- January 2017 (5)
- December 2016 (3)
- November 2016 (4)
- October 2016 (8)
- September 2016 (9)
- August 2016 (10)
- July 2016 (9)
- June 2016 (8)
- May 2016 (13)
- April 2016 (16)
- March 2016 (13)
- February 2016 (11)
- January 2016 (6)
- December 2015 (11)
- November 2015 (11)
- October 2015 (5)
- September 2015 (16)
- August 2015 (4)
- July 2015 (1)
- June 2015 (3)
- May 2015 (6)
- April 2015 (5)
- March 2015 (5)
- February 2015 (4)
- January 2015 (3)
- December 2014 (7)
- October 2014 (4)
- September 2014 (6)
- August 2014 (6)
- July 2014 (16)
- June 2014 (7)
- May 2014 (6)
- April 2014 (5)
- March 2014 (4)
- February 2014 (10)
- January 2014 (6)
- December 2013 (8)
- November 2013 (12)
- October 2013 (9)
- September 2013 (6)
- August 2013 (7)
- July 2013 (9)
- June 2013 (7)
- May 2013 (7)
- April 2013 (4)
- March 2013 (7)
- February 2013 (4)
- January 2013 (4)
- December 2012 (6)
- November 2012 (8)
- October 2012 (9)
- September 2012 (3)
- August 2012 (5)
- July 2012 (5)
- June 2012 (7)
- May 2012 (11)
- April 2012 (1)
- March 2012 (8)
- February 2012 (1)
- January 2012 (6)
- December 2011 (8)
- November 2011 (5)
- October 2011 (9)
- September 2011 (6)
- August 2011 (4)
- July 2011 (1)
- June 2011 (1)
- May 2011 (5)
- April 2011 (2)
- February 2011 (2)
- January 2011 (2)
- December 2010 (1)
- November 2010 (7)
- October 2010 (3)
- September 2010 (8)
- August 2010 (2)
- July 2010 (4)
- June 2010 (7)
- May 2010 (2)
- April 2010 (1)
- March 2010 (3)
- February 2010 (3)
- January 2010 (2)
- November 2009 (6)
- October 2009 (6)
- August 2009 (3)
- July 2009 (3)
- June 2009 (3)
- May 2009 (2)
- April 2009 (8)
- March 2009 (6)
- February 2009 (4)
- January 2009 (3)
- November 2008 (3)
- October 2008 (7)
- September 2008 (6)
- August 2008 (9)
- July 2008 (9)
- June 2008 (9)
- May 2008 (9)
- April 2008 (8)
- March 2008 (4)
- February 2008 (3)
- January 2008 (3)
- December 2007 (2)
- November 2007 (7)
- October 2007 (1)
- August 2007 (4)
- July 2007 (3)
- June 2007 (8)
- May 2007 (4)
- April 2007 (2)
- March 2007 (2)
- February 2007 (5)
- January 2007 (8)
- December 2006 (1)
- November 2006 (3)
- October 2006 (4)
- September 2006 (3)
- July 2006 (1)
- May 2006 (2)
- April 2006 (1)
- July 2005 (1)
No Comments Yet
Let us know what you think